ACKNOWLEDGMENTS

The Editorial Board of Clinical Science gratefully acknowledges the assistance given by the following referees during the year 1995.

Abernathy, D.
Agardh, E.
Agrotis, A.
Aitkenhead, A.R.
Ali, N.
Andersen, D.
Andersen, S.
Andrews, F.
Angelin, B.
Arai, S.
Archard, L.
Arslanian, S.
Arthur, J.
Astarie Dequecker, C.
Bailey, R.R.
Baines, A.
Bankir, L.
Banks, R.
Barclay, R.
Baron, A.D.
Barradas, M.A.
Barrett, E.J.
Barton, H.
Bassey, J.E.
Batchelard, H.
Beaudouin-Legros, M.
Beavan, L.
Beckett, G.
Bell, J.
Belpaire, F.
Benjamin, N.
Bennett, A.
Berl, T.
Berne, C.
Besley, G.
Best, J.
Beynon, H.
Bharaj, H.S.
Bhatnagar, D.
Bie, P.
Bishop, J.
Bistrian, B.R.
Black, C.
Blomberg, P.
Bobik, A.
Boer, W.H.
Bolter, C.P.
Bonham, J.
Bolton, C.
Boot-Handford, R.
Boughton-Smith, N.K.
Boulangier, C.
Bowyer, D.E.
Brain, S.O.
Brands, M.
Brasseur, D.
Brown, S.A.
Bunting, J.E.
Bund, S.
Burdett, K.
Burdon, R.H.
Burgess, A.W.
Burrell, L.M.
Calder, P.C.
Calver, A.
Cameron, N.E.
Campbell, E.
Caprio, J.
Casado, C.G.
Casolaro, A.
Charles, C.
Chau, N.P.
Cherniak, N.
Cherrington, A.
Ch'ng, J.L.C.
Chowienczyk, P.J.
Chung, K.F.
Clapp, J.
Clarke, C.
Clavey, V.
Clayton, P.
Cleland, J.
Clement, D.L.
Cline, G.
Cockcroft, J.R.
Cole, A.T.
Collins, A.
Collins, P.
Cooke, J.P.
Corry, B.
Crouch, M.
Cruickshank, J.K.
Cuspidi, C.
Dantzker, D.
Dart, T.
Davidson, N.
Davies, D.
Davies, M.
Dausse, J.P.
Day, C.P.
De Backer, G.
Deegan, P.C.
de Jong, N.
de Leeuw, P.W.
de Rijke, Y.B.
de Vernejoul, M.C.
Deutz, N.
Dimsdale, J.E.
Dockray, G.J.
Donker, A.J.M.
Donnelly, S.
Doorly, D.
Dornhurst, A.
Dowling, D.
Dransfield, I.
Drejer, K.A.
Dryden, S.
Dullaart, R.P.F.
Duprez, D.
During, M.
Duthie, G.
Edelman, A.
Edelson, G.
Ec, H.
Elahi, D.
Elia, M.
Emery, P.W.
Emmerich, J.
Enholm, C.
Eriksen, E.F.
Eriksson, U.
Escourrou, P.
esler, M.D.
Espiner, E.A.
Evans, B.
Fallen, E.
Fearon, K.
Feizi, T.
Feldman, R.
Feray, J.C.
Ferguson, A.
Fernig, D.
Ferrari, A.U.
Ferrari, M.D.
Feuvray, D.
Fitchett, D.
Ford, G.A.
Forster, C.
Forsling, M.
Forte, L.R.
Fosang, A.
Franceschiini, G.
Frayn, K.N.
Freeman, D.
Freestone, S.
Frelin, C.
Friedman, P.
Fryburg, D.
Fuller, B.J.
Furst, P.
Garlick, P.
Gaultier, C.
Gelhard, R.A.
Gellai, M.
Gibson, P.
Gilchrist, N.L.
Goode, G.K.
Goodlad, R.
Gore, M.
Gosden, C.M.
Goto, K.
Grassi, G.
Green, A.
Green, C.J.
Greenhaff, P.
Griffiths, R.
Haddad, P.
Griffiths, T.M.
Grimble, G.
Grimm, M.
Groop, L.
Grubeck-Loebenstein, B.
Haddy, F.
Hales, C.
Hales, J.
Hall, M.J.
Halliday, D.
Hans, G.
Hansen, P.R.
Hanson, U.
Harding, J.J.
Harris, K.
Head, G.A.
Heagerty, A.M.
Helft, G.
Henderson, I.S.
Hill, J.
Hjelmdahl, P.
Holder, D.S.
Home, P.D.
Hothier Nielsen, O.
Hughes, A.
Hughes, P.
Hughson, R.
Huisman, R.M.
Hultcrantz, R.
Hunter, J.
Ikeda, U.
Ikrum, H.
Imaijumi, T.
Ind, P.
Iouzalen, L.
Iredale, J.P.
Jack, C.I.A.
Jackson, M.J.
Jain, B.
Jakeman, P.M.
Janssen, W.M.T.
Jenkinson, S.
Jennings, G.L.
Jensen, M.
Johnson, M.R.
Johnston, P.W.
Johnstone, F.
Jones, D.
Jones, M.
Jover, B.
Julius, S.
Kamen, P.
Kaplan, A.
Khan, F.
Kingsnorth, A.N.
Kingwell, B.
Kinnear, W.
Klein, G.
Knoe, A.
Kock, F.
Koomans, H.A.
Kopp, U.
Korner, P.
Kostuk, W.
Krediel, R.Th.
Volume 91

AUTHOR INDEX

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Meguid, E.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abdel-Tawab, S.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abu-Amsha, A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Aguileras, M.T.</td>
<td>155–161</td>
</tr>
<tr>
<td>Ainley, C.</td>
<td>219–223</td>
</tr>
<tr>
<td>Albert, J.</td>
<td>225–231</td>
</tr>
<tr>
<td>Allan, P.L.</td>
<td>17–21</td>
</tr>
<tr>
<td>Almada, A.L.</td>
<td>113–118</td>
</tr>
<tr>
<td>Amadi, A.A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Amler, E.</td>
<td>719–723</td>
</tr>
<tr>
<td>Andersen, S.E.</td>
<td>99–106</td>
</tr>
<tr>
<td>Armstrong, A.L.</td>
<td>685–690</td>
</tr>
<tr>
<td>Achatz, C.P.</td>
<td>79–86</td>
</tr>
<tr>
<td>Aronson, J.K.</td>
<td>725–731</td>
</tr>
<tr>
<td>Atucha, N.M.</td>
<td>733–738</td>
</tr>
<tr>
<td>Baker, G.</td>
<td>51–58</td>
</tr>
<tr>
<td>Barbara, L.</td>
<td>219–223</td>
</tr>
<tr>
<td>Barden, A.</td>
<td>711–718</td>
</tr>
<tr>
<td>Bassey, E.J.</td>
<td>685–690</td>
</tr>
<tr>
<td>Beilin, L.J.</td>
<td>449–458, 711–718</td>
</tr>
<tr>
<td>Belch, J.F.F.</td>
<td>17–21</td>
</tr>
<tr>
<td>Bell, S.C.</td>
<td>169–175</td>
</tr>
<tr>
<td>Benn, J.</td>
<td>575–582</td>
</tr>
<tr>
<td>Bernard, C.</td>
<td>29–33</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>35–43</td>
</tr>
<tr>
<td>Bianchetti, M.G.</td>
<td>347–351</td>
</tr>
<tr>
<td>Binah, O.</td>
<td>233–239</td>
</tr>
<tr>
<td>Blakemore, S.J.</td>
<td>591–599</td>
</tr>
<tr>
<td>Bongso, A.</td>
<td>248–249</td>
</tr>
<tr>
<td>Boulton, R.</td>
<td>503–507</td>
</tr>
<tr>
<td>Bourgin, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Bradford, A.</td>
<td>337–345</td>
</tr>
<tr>
<td>Bragado, M.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Bragulat, E.</td>
<td>155–161</td>
</tr>
<tr>
<td>Bränström, R.</td>
<td>431–439</td>
</tr>
<tr>
<td>Bröjersen, A.</td>
<td>225–231</td>
</tr>
<tr>
<td>Brown, K.M.</td>
<td>107–111</td>
</tr>
<tr>
<td>Browne, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Brundin, T.</td>
<td>431–439</td>
</tr>
<tr>
<td>Bund, S.J.</td>
<td>739–743</td>
</tr>
<tr>
<td>Buvry, A.</td>
<td>319–327</td>
</tr>
<tr>
<td>Cacciafesta, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cailmail, S.</td>
<td>29–33</td>
</tr>
<tr>
<td>Calverley, P.M.A.</td>
<td>513–518</td>
</tr>
<tr>
<td>Calvo, J.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Campbell, B.J.</td>
<td>359–364</td>
</tr>
<tr>
<td>Canali, C.</td>
<td>275–281</td>
</tr>
<tr>
<td>Carter, J.</td>
<td>513–518</td>
</tr>
<tr>
<td>Cartouzou, G.</td>
<td>209–212</td>
</tr>
<tr>
<td>Carver, J.G.</td>
<td>725–731</td>
</tr>
<tr>
<td>Caso, G.</td>
<td>99–106</td>
</tr>
<tr>
<td>Cassell, T.B.</td>
<td>509–512</td>
</tr>
<tr>
<td>Castleden, C.M.</td>
<td>467–474</td>
</tr>
<tr>
<td>Cattell, V.</td>
<td>375–384</td>
</tr>
<tr>
<td>Celli, V.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cester, N.</td>
<td>719–723</td>
</tr>
<tr>
<td>Chadwick, J.G.</td>
<td>617–620</td>
</tr>
<tr>
<td>Chan, S.H.</td>
<td>256–258</td>
</tr>
<tr>
<td>Chan, S.Y.</td>
<td>250–252</td>
</tr>
<tr>
<td>Charles, C.J.</td>
<td>283–291</td>
</tr>
<tr>
<td>Chin-Dusting, J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Christensen, N.J.</td>
<td>621–626</td>
</tr>
<tr>
<td>Chua, T.P.</td>
<td>391–398</td>
</tr>
<tr>
<td>Cipollina, M.R.</td>
<td>703–710</td>
</tr>
<tr>
<td>Claassen, J.A.H.R.</td>
<td>483–488</td>
</tr>
<tr>
<td>Clague, J.E.</td>
<td>513–518</td>
</tr>
<tr>
<td>Clark, M.L.</td>
<td>425–430</td>
</tr>
<tr>
<td>Coats, A.J.S.</td>
<td>391–398</td>
</tr>
<tr>
<td>Coca, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>Colombani, V.</td>
<td>209–212</td>
</tr>
<tr>
<td>Colombro, R.</td>
<td>391–398</td>
</tr>
<tr>
<td>Compton, J.E.</td>
<td>307–312</td>
</tr>
<tr>
<td>Connell, J.M.C.</td>
<td>65–71</td>
</tr>
<tr>
<td>Cook, H.T.</td>
<td>375–384</td>
</tr>
<tr>
<td>Coupland, C.A.C.</td>
<td>685–690</td>
</tr>
<tr>
<td>Cowley, A.J.</td>
<td>415–423</td>
</tr>
<tr>
<td>Crawley, J.</td>
<td>51–58</td>
</tr>
<tr>
<td>Crijns, F.R.L.</td>
<td>45–50</td>
</tr>
<tr>
<td>Croft, K.D.</td>
<td>449–458, 711–718</td>
</tr>
<tr>
<td>Curran, A.K.</td>
<td>337–345</td>
</tr>
<tr>
<td>D'Almeida, M.</td>
<td>29–33</td>
</tr>
<tr>
<td>Davies, P.S.W.</td>
<td>763–769</td>
</tr>
<tr>
<td>Day, J.M.E.</td>
<td>763–769</td>
</tr>
<tr>
<td>de Silva, H.A.</td>
<td>725–731</td>
</tr>
<tr>
<td>de Chazal, R.</td>
<td>169–175</td>
</tr>
<tr>
<td>De La Sierra, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>De Leeuw, P.W.</td>
<td>163–168</td>
</tr>
<tr>
<td>De Propris, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>De Rooij, M.J.M.</td>
<td>483–488</td>
</tr>
<tr>
<td>Del Mar Lluch, M.</td>
<td>155–161</td>
</tr>
<tr>
<td>Dessauer, C.W.</td>
<td>527–537</td>
</tr>
<tr>
<td>Di Bernardo, M.G.</td>
<td>385–389</td>
</tr>
<tr>
<td>Di Virgilio, F.</td>
<td>703–710</td>
</tr>
<tr>
<td>Dickinson, C.J.</td>
<td>539–550</td>
</tr>
<tr>
<td>Dimitriadou, V.</td>
<td>319–327</td>
</tr>
<tr>
<td>Ding, X.-J.</td>
<td>93–98</td>
</tr>
<tr>
<td>Dowling, R.H.</td>
<td>509–512</td>
</tr>
<tr>
<td>Drummond, P.D.</td>
<td>73–77</td>
</tr>
<tr>
<td>Dudley, F.</td>
<td>23–28</td>
</tr>
<tr>
<td>Duner, E.</td>
<td>703–710</td>
</tr>
<tr>
<td>Duthie, G.G.</td>
<td>107–111</td>
</tr>
<tr>
<td>Dutto, F.</td>
<td>313–318</td>
</tr>
<tr>
<td>Earnest, C.P.</td>
<td>113–118</td>
</tr>
<tr>
<td>El-Gamal, N.</td>
<td>627–631</td>
</tr>
<tr>
<td>Elliott, H.L.</td>
<td>65–71</td>
</tr>
<tr>
<td>Elliott, R.A.</td>
<td>467–474</td>
</tr>
<tr>
<td>Ellory, J.C.</td>
<td>353–358</td>
</tr>
<tr>
<td>Engelman, J.L.</td>
<td>509–512</td>
</tr>
<tr>
<td>Escourrou, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Espiner, E.A.</td>
<td>283–291</td>
</tr>
<tr>
<td>Essén, P.</td>
<td>99–106</td>
</tr>
<tr>
<td>Eto, T.</td>
<td>293–298</td>
</tr>
<tr>
<td>Fagbemi, O.S.</td>
<td>745–754</td>
</tr>
<tr>
<td>Farag, M.M.</td>
<td>187–191</td>
</tr>
<tr>
<td>Farmer, R.D.T.</td>
<td>87–92</td>
</tr>
<tr>
<td>Farzaneh, F.</td>
<td>213–218</td>
</tr>
<tr>
<td>Feigel, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Felzen, B.</td>
<td>233–239</td>
</tr>
<tr>
<td>Feng, Y.-H.</td>
<td>459–466</td>
</tr>
<tr>
<td>Finch, P.M.</td>
<td>73–77</td>
</tr>
<tr>
<td>Finnie, I.A.</td>
<td>359–364</td>
</tr>
<tr>
<td>Flanagan, G.J.</td>
<td>353–358</td>
</tr>
<tr>
<td>Forster, C.D.</td>
<td>425–430</td>
</tr>
<tr>
<td>Fortepiani, L.A.</td>
<td>733–738</td>
</tr>
<tr>
<td>Fowler, B.</td>
<td>79–86</td>
</tr>
<tr>
<td>Frank, S.M.</td>
<td>627–631</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>425–430, 679–683</td>
</tr>
<tr>
<td>Freestone, S.</td>
<td>177–185</td>
</tr>
<tr>
<td>Frick, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Frossard, N.</td>
<td>319–327</td>
</tr>
<tr>
<td>Frostell, C.</td>
<td>225–231</td>
</tr>
<tr>
<td>Gafter, U.</td>
<td>519–523</td>
</tr>
<tr>
<td>Garbarg, M.</td>
<td>319–327</td>
</tr>
<tr>
<td>Garcia, L.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Garcia-Estañ, J.</td>
<td>733–738</td>
</tr>
<tr>
<td>Garlick, P.J.</td>
<td>99–106</td>
</tr>
<tr>
<td>Gaskin, G.</td>
<td>329–335</td>
</tr>
<tr>
<td>Gerolami, A.</td>
<td>209–212</td>
</tr>
<tr>
<td>Ghosh, S.</td>
<td>213–218</td>
</tr>
<tr>
<td>Gibson, A.</td>
<td>633–638</td>
</tr>
<tr>
<td>Gilman, A.G.</td>
<td>527–537</td>
</tr>
<tr>
<td>Giner, V.</td>
<td>155–161</td>
</tr>
<tr>
<td>Giordano, A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Glenville, B.</td>
<td>51–58</td>
</tr>
<tr>
<td>Goldman, J.M.</td>
<td>329–335</td>
</tr>
</tbody>
</table>
Author Index

Pearson, M.G. 513–518
Peeters, L.L.H. 163–168
Peheim, E. 347–351
Pereira, S.P. 509–512
Pessina, A.C. 275–281
Peters, A.M. 329–335
Peters, T.J. 213–218
Petrarulo, M. 313–318
Petrie, J.R. 65–71
Pickin, D.M. 399–413, 773–774
Piepoli, M. 391–398
Potter, J.F. 59–64
Powers, H. 633–638
Prasad, K. 441–448
Primrose, J.N. 371–374
Proudfoot, J.M. 449–458
Puddey, I.B. 449–458
Qureshi, I.A. 93–98
Rabin, R.A. 719–723
Radda, G.K. 691–702
Rademaker, M.T. 283–291
Rae, C. 353–358
Raja, S.N. 627–631
Ramsay, L.E. 399–413, 617–620, 773–774
Ravel, U. 51–58
Recchi, D. 385–389
Reitsma, W.D. 583–589
Ren, E.C. 256–258
Rennie, M.J. 591–599
Rhodes, J.M. 359–364
Ricci, C. 219–223
Richards, A.M. 3–16, 283–291, 525
Rickhuss, P.K. 591–599
Ritchie, J. 711–718
Rooyackers, O.E. 475–481
Rouleau, A. 319–327
Rovera, L. 313–318
Ryan, J. 23–28
Sadec, S.K. 359–364
Samra, J.S. 425–430, 679–683
Samson, R.R. 177–185
San Román, J.I. 365–369, 771
Sanderson, A.L. 691–702
Sanderson, J.E. 35–43
Savill, J. 329–335
Schibler, A. 347–351
Schwartz, J.-C. 319–327
Scuteri, A. 385–389
Selldén, E. 431–439
Shan, Y.-F. 93–98
Shehata, R. 187–191
Sherman, R.C. 607–615
Shirley, D.G. 299–305
Shuker, C. 51–58
Silvester, W. 567–573
Silviani, V. 209–212
Simpson, E.J. 425–430
Simpson, R.J. 213–218
Skipworth, S. 73–77
Sladen, G.E. 509–512
Sluiter, W.J. 583–589
Smit, A.J. 583–589
Smith, C.C.T. 679–683
Smith, M.A. 763–769
Sönksen, P.H. 575–582
Soupison, T. 29–33
Sredni, B. 519–523
Staffolani, R. 719–723
Stritoni, P. 275–281
Struikker-Boudier, H.A.J. 131–139
Stubbs, T.A. 415–423
Sugimori, K. 755–761
Summers, L.K.M. 679–683
Swales, J.D. 59–64
Tan, C.-C. 258–260
Tavakoli, R. 319–327
Tay, A. 264–266
Taylor, B.A. 359–364
Taylor, D.J. 169–175
Taylor, E.A. 261–264
Tedgui, A. 29–33
Thien, Th. 483–488, 559–565
Thompson, C.H. 691–702
Thorell, A. 99–106
Thorlakson, J.P. 575–582
Thorniley, M.S. 51–58
Thurston, H. 59–64
Tjäder, I. 99–106
Toft, J. 621–626
Tomlinson, B. 35–43
Tonkin, A.M. 201–208
Trevisan, M. 703–710
Trevisan, R. 703–710
Truttmann, A.C. 347–351
Tsai, J.-F. 601–606
Turney, J.H. 763–769
Tweddel, A. 739–743
Ueda, S. 65–71
Ul Haq, I. 399–413, 773–774
Unwin, R.J. 299–305
Urbano-Márquez, A. 155–161
Ussov, W.Yu 329–335
Vaira, D. 219–223
Van Asten, W.N.J.C. 483–488
Van Beek, E. 163–168
Van der Kolk, E. 583–589
Van Es, P.N. 163–168
Van Essen, H. 131–139
Van Goudoever, J. 193–200
Van Haeften, T.W. 583–589
Van Lieshout, J.J. 193–200
Visentin, P. 275–281
Vitale, C. 313–318
Volterrani, M. 391–398
Wagenmakers, A.J.M. 475–481
Wallace, W.A. 685–690
Wallén, N.H. 225–231
Walter, S.J. 299–305
Walters, B.N. 711–718
Watt, P.W. 591–599
Watts, G.F. 567–573
Webster, N. 371–374
Welham, S.J.M. 607–615
Wernerman, J. 99–106
Wesseling, K.H. 193–200
Weston, P.J. 59–64
Whitaker, R.P. 467–474
Widdop, R.E. 147–154
Willekes, C. 163–168
Wincarls, C.G. 353–358
Wollersheim, H. 483–488, 559–565
Woo, K.S. 35–43
Woodrow, G. 763–769
Wu, P.K. 627–631
Xie, Y. 93–98
Yang, M.C.-M. 601–606
Yang, S. 29–33
Ye, J. 23–28
Yeung, L.Y.C. 35–43
Yeung, D.T.K. 35–43
Yeung, L.Y.C. 35–43
Young, R. 307–312
Yu, L.-G. 359–364
Zolese, G. 719–723
Subject Index

First and last page numbers of papers to which entries refer are given. Page numbers marked with an asterisk refer to Reviews.

Accidental falls 685–690
Acetylcholine
endothelium, Syndrome X 739–743
nitric oxide, liver cirrhosis 733–738
Action potential
cardiac muscle, nutritional iron deficiency 233–239
Activation energy
Na⁺, K⁺-ATPase, gestational hypertension 719–723
S-Adenosylhomocysteine metabolism 79–86
S-Adenosylmethionine metabolism 79–86
Adenylate cyclase
G-proteins, signal transduction 527–537*
Adipose tissue
microdialysis, catecholamines 425–430
Adipose tissue blood flow
body mass index 679–683
Adrenaline
lymphocytes, cyclic AMP 612–626
α-Adrenergic receptors
skin, reflex sympathetic dystrophy 73–77
Adrenergic β₂-receptors
lymphocytes, noradrenaline 621–626
α-Adrenoceptor antagonist
thermoregulation 627–631
Adrenomedullin
G-protein-linked receptors, cyclic AMP 3–16*, 525
salt, essential hypertension 293–298
Ageing
lymphocytes, cyclic AMP 621–626
Alcohol
pancreatitis-associated protein messenger RNA 213–218
Alcoholic cirrhosis
nitric oxide 23–28
Aliphatic amines
renal failure, choline transport 353–358
Alkalosis
hyperventilation, magnesium 347–351
Almitrine
ventilation, muscle activity 337–345
Ambulatory blood pressure
left ventricular function, hypertension 275–281
Ambulatory monitoring
blood pressure, sleep 45–50
Amino acids
inflammation, cytokines 121–130*
metabolism, vascular disease 79–86
renal transplant recipients, cyclosporin A 489–496
thermogenesis, anaesthesia 431–439
Aminoglycosides
nephrotoxicity, non-steroidal anti-inflammatory drugs 187–191
Amylase release
pancreatitis 365–369, 771
Anaesthesia
amino acids, thermogenesis 431–439
Angina
cholesterol, lipids 399–413, 773–774
Angiotensin II
microalbuminuria, non-insulin-dependent diabetes 703–710
Angiotensin type 1 receptor antagonists
renal vasodilatation, spontaneously hypertensive rats 147–154
Angiotensin-converting enzyme
genetic polymorphism, bradykinin 617–620
Antioxidant enzyme
vitamin E, smoking 107–111
Antioxidants
inflammation, cytokines 121–130*
Antisense oligodeoxynucleotides
multidrug resistance 93–98
Aorta
nitric oxide, liver cirrhosis 733–738
Arachidonic acid
phospholipids, Crohn’s disease 509–512
Arterialization
insulin sensitivity, forearm blood flow 65–71
Artery
morphology, Syndrome X 739–743
ATP synthesis
Subject Index

exercise, obesity 691–702
ATP-sensitive potassium channels
potassium channel openers 651–663*
Atrial natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
salt, essential hypertension 293–298
potassium channel openers 651–663*
Autoantigen
T-lymphocytes, biliary cirrhosis 551–558
Autoimmunity
T-lymphocytes, biliary cirrhosis 551–558
Autonomic function
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Autonomic nervous system
heart failure, heart rate variability 391–398
heart failure, spectral power 35–43
Poincaré plot, heart rate variability 201–208
Autoregulation
Na+, K+-ATPase, ouabain 497–502
Balance
oestrogen replacement therapy 685–690
Baroreflex sensitivity
autonomic function, insulin-dependent diabetes mellitus 59–64
Bicarbonate-urea method
energy expenditure, human immunodeficiency virus infection 241–245
Biliary cirrhosis
autoimmunity, T-lymphocytes 551–558
Blastocyst transfer
human embryos 248–249
Bleeding time
inhaled nitric oxide 225–231
Blood flow
vascular disease, ultrasound 17–21
Blood pressure
ambulatory monitoring, sleep 45–50
stroke volume, syncope 193–200
Blood temperature
amino acids, anaesthesia 431–439
Blood transfusion
T-helper 2 cytokines, transforming growth factor 519–523
Body composition
chronic kidney failure 763–769
Body mass index
adipose tissue blood flow 679–683
Bone mineral density
postmenopausal women 307–312
Bone resorption
calcium nephrolithiasis, mineral water 313–318
Bradykinin
angiotensin-converting enzyme, genetic polymorphism 617–620
endothelium, Syndrome X 739–743
Brain
oxidative metabolism, hypertension 539–550
Brain natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
Breath-holding time
control of breathing, dyspnoea 755–761
Bronchial hyper-responsiveness
lung transplantation, mast cells 319–327
Bumetanide
Na+/K+/2Cl− co-transport 725–731
Caerulein
pancreatitis, intracellular calcium 365–369, 771
Caffeic acid
lipoprotein oxidation, wine 449–458
Calcium
alkalosis, hyperventilation 347–351
Calcium antagonist
oxidants 459–466
urinary bladder 467–474
Calcium nephrolithiasis
mineral water 313–318
Calcium oxalate
urine state of saturation, calcium nephrolithiasis 313–318
Calcium phosphate
urine state of saturation, calcium nephrolithiasis 313–318
Calf muscle pump function
validation, chronic venous insufficiency 483–488
Cancer
eicosanoid production 264–266
Helicobacter pylori, serology 219–223
Capillaroscopy
microcirculation 131–139*
Capsaicin
chilli, stomach 252–254
Carbon dioxide
inspiratory effort sensation, sustained loading 513–518
recovery 665–677
Cardiac muscle
nutritional iron deficiency 233–239
Cardiac oxygenation
ischaemia, spectrophotometry 51–58
Catalase
diabetes 441–448
Catecholamines
adipose tissue, microdialysis 425–430
Cell adhesion
epidermal stem cells, integrins 141–146*
Subject Index

Cell adhesion molecules
 integrins 639–650*
Cell differentiation
 epidermal stem cells 141–146*
Cell division
 epidermal stem cells 141–146*
Cell proliferation
 epidermal growth factor, gastrointestinal tract 503–507
Cerebral blood supply
 hypertension 539–550
Cerebrovascular disease
 hypertension 539–550
Cervical carcinoma
 DNA testing, papillomavirus 250–252
Chemiluminescence
 oxidants, calcium antagonist 459–466
Chemoreceptors
 heart failure, heart rate variability 391–398
Chilli
 capsaicin, stomach 252–254
Cholecystokinin 8
 intracellular calcium, pancreatitis 365–369, 771
Cholesterol
 coronary heart disease, lipids 399–413, 773–774
 metabolism
 creatine supplementation 113–118
Choline transport
 renal failure, haemodialysis 353–358
Chronic kidney failure
 body composition 763–769
Chronic venous insufficiency
 calf muscle pump function, validation 483–488
Cirrhosis
 tumour necrosis factor-α, pentoxifylline 29–33
Clinical research
 progress in Singapore 247–266
Colonic mucin
 corticosteroids, nicotine 359–364
Contractile response
 portal hypertension, octreotide 601–606
Contractility
 cardiac muscle, nutritional iron deficiency 233–239
Control of breathing
 breath-holding time, dyspnoea 755–761
Coronary heart disease
 cholesterol, lipids 399–413, 773–774
Coronary risk
 lipids 399–413, 773–774
Corticosteroids
 mucin, colon 359–364
Creatine supplementation
 lipid metabolism 113–118
Crohn’s disease
 fatty acids, phospholipids 509–512
Cromakalim
 therapeutic targets 651–663*
CV-11974
 renal vasodilatation, spontaneously hypertensive rats 147–154
Cyclic AMP
 G-protein-linked receptors, adrenomedullin 3–16*, 525
 G-proteins, signal transduction 527–537*
 lymphocytes, noradrenaline 621–626
Cyclic GMP
 inhaled nitric oxide 225–231
 neutral endopeptidase, ventricular pacing 283–291
Cyclosporin A
 renal transplant recipients 489–496
Cytochrome aa3
 ischaemia, spectrophotometry 51–58
Cytochrome c oxidase
 muscle wasting, zymosan 475–481
Cytokine
 pentoxifylline, cirrhosis 29–33
Cytokines
 nutrients, inflammation 121–130*
Densitometry
 chronic kidney failure 763–769
Dermis
 α-adrenergic receptors, reflex sympathetic dystrophy 73–77
Diabetes
 endothelium, dyslipidaemia 567–573
 microcirculation 131–139*
 oxidative stress 441–448
 oxidative stress, glyoxylase 575–582
Diabetes mellitus
 baroreflex sensitivity, autonomic function 59–64
Diabetic foot
 skin microcirculation, neuropathy 559–565
Diaphragm
 almitrine, electromyography 337–345
Diclofenac sodium
 nephrotoxicity, gentamicin 187–191
DNA testing
 papillomavirus, cervical carcinoma 250–252
Dopamine
 5-hydroxytryptamine, renal sodium excretion 177–185
 renal transplant recipients, cyclosporin A 489–496
Dyslipidaemia
 diabetes, endothelium 567–573
Dyspnoea
Subject Index

control of breathing, breath-holding 755–761

Echocardiography
left ventricular function, hypertension 275–281
EEG arousal
blood pressure, sleep 45–50
Eicosanoid production
hypertension, cancer 264–266
Electromyography
muscle activity, almitrine 337–345
Embryos
blastocyst transfer, stem cell production 248–249
Endothelin
salt, essential hypertension 293–298
Endothelin peptides
human kidney 267–273*
Endothelin receptors
human kidney 267–273*
Endothelium
diabetes, dyslipidaemia 567–573
phenylephrine, liver cirrhosis 733–738
Syndrome X 739–743
Energy expenditure
bicarbonate-urea method, human immunodeficiency virus infection 241–245
Epidermal growth factor
cell proliferation, gastrointestinal tract 503–507
Epidermal stem cells
cell adhesion, integrins 141–146*
Epidermis
α-adrenergic receptors, reflex sympathetic dystrophy 73–77
Epilepsy
 genetic analysis 264–266
Erythropoietin dysregulation
renal failure 258–260
Essential hypertension
salt, adrenomedullin 293–298
Exercise
ATP synthesis, obesity 691–702
EXP 3174
renal vasodilatation, spontaneously hypertensive rats 147–154
Familial hypokalaemic periodic paralysis
sodium pump 261–264
Fatiguability
cytochrome c oxidase, zymosan 475–481
Fatigue
inspiratory effort sensation, CO₂ responsiveness 513–518
Fats
inflammation, cytokines 121–130*
phospholipids, Crohn’s disease 509–512
Fetal programming
maternal nutrition, hypertension 607–615
Fetuses
gestational age, kidney 169–175
Fibroblasts
intracellular pH, free cytosolic calcium 703–710
Flooding dose
muscle wasting, zymosan 475–481
Fluidity
Na⁺, K⁺-ATPase, gestational hypertension 719–723
Fluoxetine
5-hydroxytryptamine, platelet aggregation 87–92
Forearm blood flow
arterialization 65–71
menstrual cycle 163–168
Free cytosolic calcium
microalbuminuria, non-insulin-dependent diabetes 703–710
Furosemide
sodium depletion 299–305
Gallbladder
sodium/hydrogen exchanger, sodium absorption 209–212
Gastrointestinal tract
cell proliferation, epidermal growth factor 503–507
Gene expression
pancreatitis-associated protein, mouse intestine 213–218
Genetic analysis
research in Singapore 264–266
Genetic polymorphism
angiotensin-converting enzyme, bradykinin 617–620
Geniohyoid
almitrine, electromyography 337–345
Gentamicin
nephrotoxicity, non-steroidal anti-inflammatory drugs 187–191
Gestational age
renin, kidney 169–175
Gestational hypertension
Na⁺, K⁺-ATPase 719–723
Glomerular filtration rate
ten transplant recipients, cyclosporin A 489–496
Glomerulonephritis
IgA nephropathy 258–260
Glucocorticoids
fetal programming, hypertension 607–615
Glucose transport
sarcolemma, insulin 591–599
Gludopa
renal metabolism 177–185
\(\gamma \text{-L-Glutamyl-5-hydroxy-L-tryptophan} \)
renal metabolism 177–185
Glutathione
antioxidants, cytokines 121–130*
Glutathione peroxidase
diabetes 441–448
Glycogenolysis
exercise, obesity 691–702
Glyoxal
diabetes, oxidative stress 575–582
Glyoxylase
diabetes, oxidative stress 575–582
G-protein-linked receptors
adrenomedullin, cyclic AMP 3–16*, 525
G-proteins
signal transduction, adenylate cyclase 527–537*
Granulocyte activation
inflammatory disease 329–335
Granulocyte pool
\(^{111}\text{In}-^{59m}\text{Tc} \)-labelled granulocytes, inflammatory
disease 329–335
Grape juice
phenolic compounds, lipoprotein oxidation 449–458
Growth hormone
male infertility 254–256
Haemodialysis
blood transfusion 519–523
renal failure, choline transport 353–358
Haemodynamics
ischaemia, spectrophotometry 51–58
meal ingestion, insulin 415–423
neutral endopeptidase, ventricular pacing 283–291
pentoxifylline, cirrhosis 29–33
Heart failure
adrenomedullin 3–16*, 525
autonomic nervous system, spectral power 35–43
heart rate variability, autonomic nervous system 391–398
Heart rate
blood pressure, sleep 45–50
Heart rate variability
autonomic nervous system, spectral power 35–43
heart failure, autonomic nervous system 391–398
Poincaré plot, parasympathetic nervous system 201–208
Helicobacter pylori
serology, cancer 219–223
High-performance liquid chromatography
non-transferrin-bound iron, preterm babies 633–638
Hip
bone-mineral density, postmenopausal women 307–312
Homocysteine
metabolism 79–86
Hormone replacement therapy
bone mineral density, postmenopausal women 307–312
Human immunodeficiency virus infection
energy expenditure, bicarbonate-urea method 241–245
Human leucocyte antigens
nasopharyngeal carcinoma 256–258
5-Hydroxytryptamine
dopamine, renal sodium excretion 177–185
platelet aggregation, fluoxetine 87–92
Hyperglycaemia
insulin release, muscle strength 583–589
Hyperinsulinaemic euglycaemic clamp
insulin sensitivity, arterIALIZATION 65–71
Hypertension
adrenomedullin 3–16*, 525
contractile response, octreotide 601–606
eicosanoid production 264–266
fetal programming, maternal nutrition 607–615
left ventricular function,
echocardiography 275–281
microcirculation 131–139*
\(\text{Na}^+, \text{K}^-\text{-ATPase}, \text{ouabain} \) 497–502
oxidative metabolism, brain 539–550
renin, gestational age 169–175
salt, adrenomedullin 293–298
salt sensitivity 155–161
Hyperventilation
alkalosis, magnesium 347–351
Hypokalaemic periodic paralysis
insulin release 583–589
sodium pump 261–264
Hypometabolism
amino acids, anaesthesia 431–439
Hypotension
stroke volume, syncope 193–200
Hypothermia\(\alpha \)-adrenoceptor antagonist 627–631
amino acids, anaesthesia 431–439
Hypothermic preservation
rat heart, protein kinase C inhibitors 745–754
Hypoxia
pancreatitis-associated protein
messenger RNA 213–218
Ibuprofen
nephrotoxicity, gentamicin 187–191
IgA nephropathy
primary glomerulonephritis 258–260
Immune complex disease
inflammation mediators, nitric oxide 375–384*
Immunity
nitric oxide 375–384*
Immunostaining
mast cells, lung transplantation 319–327
In-99mTc-labelled granulocytes
lung granulocyte pool, inflammatory disease 329–335
Infertility
growth hormone 254–256
Inflammation
nutrients, cytokines 121–130*
Inflammation mediators
nitric oxide, immune complex disease 375–384*
Inflammatory disease
granulocyte activation, lung granulocyte pool 329–335
Inhaled nitric oxide
platelet function 225–231
Innervation
lung transplantation 319–327
Inspiratory effort sensation
CO₂ responsiveness, sustained loading 513–518
Insulin
adipose tissue blood flow 679–683
glucose transport, sarcolemma 591–599
microalbuminuria, non-insulin-dependent diabetes 703–710
regional haemodynamics, meal ingestion 415–423
Insulin release
hypokalaemic periodic paralysis 583–589
Insulin sensitivity
arterialization 65–71
Insulin-dependent diabetes mellitus
baroreflex sensitivity, autonomic function 59–64
Integrins
cell adhesion, epidermal stem cells 141–146*
cell adhesion molecules 639–650*
Interleukin
blood transfusion 519–523
nutrients, inflammation 121–130*
Intracellular calcium
pancreatitis 365–369, 771
Intracellular pH
microalbuminuria, non-insulin-dependent diabetes 703–710
Intravenous nutrition
epidermal growth factor 503–507
Intravital microscopy
microcirculation 131–139*
Inulin clearance
menstrual cycle 163–168
Iron deficiency
pancreatitısı-associated protein messenger RNA 213–218
Iron overload
pancreatitısı-associated protein messenger RNA 213–218
Ischaemia
cardiac oxygenation, spectrophotometry 51–58
oxidants, calcium antagonist 459–466
Iso-electric focusing
serology, cancer 219–223
Iso-prostane
lipid peroxidation, pregnancy 711–718
Keratinocytes
epidermal stem cells 141–146*
Kidney
endothelins 267–273*
fetal programming, hypertension 607–615
renin, gestational age 169–175
Labelled carbon dioxide
recovery 665–77
Left ventricular function
echocardiography, hypertension 275–281
Lipid
neutrophils, sepsis 371–374
Lipid metabolism
creatinine supplementation 113–118
Lipid peroxidation
diabetes 441–448
pre-eclampsia, pregnancy 711–718
vitamin E, smoking 107–111
Lipids
coronary heart disease, cholesterol 399–413, 773–774
Lipoprotein oxidation
phenolic compounds, wine 449–458
Lithium clearance
renal transplant recipients, cyclosporin A 489–496
Liver
autoimmunity, T-lymphocytes 551–558
Liver cirrhosis
phenylephrine, nitric oxide 733–738
Loop of Henle
sodium depletion, frusemide 299–305
Loss of label
carbon dioxide 665–677
Lung granulocyte pool
In-99mTc-labelled granulocytes, inflammatory disease 329–335
Lung transplantation
mast cells, bronchial hyper-responsiveness 319–327
Lymphocytes
cyclic AMP, noradrenaline 621–626
protein synthesis, stable isotope 99–106
Magnesium
alcalosis, hyperventilation 347–351
Magnetic resonance spectroscopy
ATP synthesis 691–702
Male infertility
growth hormone 254–256
Mast cells
lung transplantation, bronchial
hyper-responsiveness 319–327
Maternal nutrition
fetal programming, hypertension 607–615
Meal ingestion
regional haemodynamics, insulin 415–423
Mean arterial pressure
metabolic risk factors, sex 385–389
MEMbrane
sarcolemma, glucose transport 591–599
MEMbrane current
cardiac muscle, nutritional iron deficiency 233–239
Menstrual cycle
sex hormones, vascular relaxation 163–168
Mesenteric artery
contractile response, octreotide 601–606
Messenger RNA
pancreatititis-associated protein, mouse intestine 213–218
Metabolic risk factors
blood pressure, sex 385–389
Metabolism
amino acids, vascular disease 79–86
thermoregulation, \(\alpha\)-adrenoceptor antagonist 627–631
Methodology
labelled carbon dioxide, recovery 665–677
Methylglyoxal
diabetes, oxidative stress 575–582
5-Methyltetrahydrofolate metabolism 79–86
Microalbuminuria
intracellular pH, free cytosolic calcium 703–710
Microcirculation
cardiovascular disease 131–139*
(diabetic foot, neuropathy 559–565
Microdialysis
adipose tissue, catecholamines 425–430
Microperfusion
loop of Henle, frusemide 299–305
Micropuncture
sodium depletion, frusemide 299–305
Mineral water
calcium nephrolithiasis 313–318
Mitochondria
ischaemia, spectrophotometry 51–58
Morphology
artery, Syndrome X 739–743
Mouse intestine
pancreatititis-associated protein, messenger RNA 213–218
Mucin
corticosteroids, nicotine 359–364
Multiperfusion resistance
antisense oligodeoxynucleotides 93–98
Muscle
oestrogen replacement therapy 685–690
Muscle metabolism
exercise, obesity 691–702
Muscle strength
hypokalaemic periodic paralysis 583–589
Muscle wasting
cytochrome \(c\) oxidase, zymosan 475–481
Myocardial infarction
cholesterol, lipids 399–413, 773–774
Na\(^+\)/K\(^+\)/2Cl\(^-\) co-transport platelets 725–731
Na\(^+\), K\(^+\)-ATPase
gestational hypertension 719–723
ouabain, hypertension 497–502
Nasopharyngeal carcinoma
human leucocyte antigens 256–258
Natriuresis
adrenomedullin 3–16*, 525
normal endopeptidase, ventricular pacing 283–291
Natriuretic peptides
normal endopeptidase, ventricular pacing 283–291
Natural killer cells
cyclic AMP, noradrenaline 621–626
Nephrotoxicity
gentamicin, non-steroidal anti-inflammatory drugs 187–191
Neuropathy
diabetic foot, skin microcirculation 559–565
Neutral endopeptidase
natriuretic peptides, ventricular pacing 283–291
Neutrophils
total parenteral nutrition, sepsis 371–374
Nicotine
mucin, colon 359–364
Nitric oxide
alcoholic cirrhosis 23–28
diabetes, dyslipidaemia 567–573
immunity 375–384*
phenylephrine, liver cirrhosis 733–738
platelet function 225–231
Nitric oxide synthase
immunity 375–384*
Non-insulin-dependent diabetes
intracellular pH, free cytosolic calcium 703–710
Non-steroidal anti-inflammatory drugs
nephrotoxicity, gentamicin 187–191
Non-transferrin-bound iron
high-performance liquid chromatography, preterm babies 633–638
Noradrenaline
lymphocytes, cyclic AMP 621–626
Subject Index

salt sensitivity, hypertension 155–161

Nutrients
- inflammation, cytokines 121–130*

Nutritional iron deficiency
- cardiac muscle 233–239

Obesity
- adipose tissue blood flow 679–683
- ATP synthesis, exercise 691–702

Ocrotide
- contractile response, portal hypertension 601–606

Oestrogen replacement therapy
- muscle, balance 685–690

Ouabain
- Na+, K+-ATPase, hypertension 497–502

Oxidants
- exercise, obesity 691–702

Oxidation
- brain, hypertension 539–550

Oxidative stress
- diabetes 441–448
- diabetes, glyoxylase 575–582

Oxygen consumption
- oxidants, calcium antagonist 459–466

Pancreatic acinar cells
- intracellular calcium, pancreatitis 365–369, 771

Pancreatitis
- intracellular calcium 365–369, 771

Pancreatitis-associated protein messenger RNA, mouse intestine 213–218

Papillomavirus
- DNA testing, cervical carcinoma 250–252

Para-aminohippurate clearance
- menstrual cycle 163–168

Parasympathetic nervous system
- Poincaré plot, heart rate variability 201–208

Parenteral nutrition
- epidermal growth factor 503–507

Pentoxifylline
- tumour necrosis factor-α, cirrhosis 29–33

Phagocytosis
- oxidants, calcium antagonist 459–466

Phenolic compounds
- lipoprotein oxidation, wine 449–458

Phentolamine
- thermoregulation 627–631

Phenylephrine
- contractile response, octreotide 601–606
- nitric oxide, liver cirrhosis 733–738

Phosphocreatine breakdown
- exercise, obesity 691–702

Phospholipids
- fatty acids, Crohn’s disease 509–512

Physical activity
- bicarbonate-urea method, human immunodeficiency virus infection 241–245

Physical fitness
- lymphocytes, cyclic AMP 621–626

Pinacidil
- insulin release, muscle strength 583–589

Placenta
- Na+, K+-ATPase, gestational hypertension 719–723

Platelet aggregation
- 5-hydroxytryptamine, fluoxetine 87–92
- inhaled nitric oxide 225–231

Platelets
- Na+/K+/2Cl− co-transport 725–731

Plethysmography
- calf muscle pump function 483–488

Poincaré plot
- parasympathetic nervous system, heart rate variability 201–208

Polymerase chain reaction
- renal endothelins 267–273*

Portal hypertension
- contractile response, octreotide 601–606
- pentoxifylline, cirrhosis 29–33

Post-menopause
- oestrogen replacement therapy 685–690

Post-thrombotic syndrome
- calf muscle pump function, validation 483–488

Postmenopausal women
- bone mineral density 307–312

Posture
- spectral power 35–43

Potassium
- alkalosis, hyperventilation 347–351

Potassium channel openers
- therapeutic targets 651–663*

Pre-eclampsia
- lipid peroxidation 711–718

Pregnancy
- lipid peroxidation 711–718

Pressure natriuresis
- Na+, K+-ATPase, ouabain 497–502

Preterm babies
- non-transferrin-bound iron, high-performance liquid chromatography 633–638

Primary prevention
- coronary heart disease 399–413, 773–774

Protease
- mast cells, lung transplantation 319–327

Protein kinase C inhibitors
- rat heart, hypothermic preservation 745–754

Protein synthesis
- lymphocytes, stable isotope 99–106

Pulse pressure
- metabolic risk factors, sex 385–389

Rat heart
- hypothermic preservation, protein kinase C inhibitors 745–754

Recovery
Subject Index

labelled carbon dioxide 665–677
Reflex sympathetic dystrophy
\(\alpha\)-adrenergic receptors, skin 73–77
Renal endotoxins
quantitative polymerase chain reaction
analysis 267–273*
Renal failure
choline transport, haemodialysis 353–358
erthropoietin dysregulation 258–260
Renal plasma flow
renal transplant recipients, cyclosporin A 489–496
Renal sodium excretion
dopamine, 5-hydroxytryptamine 177–185
Renal transplant recipients
amino acids, dopamine 489–496
Renal tubule
sodium depletion, frusemide 299–305
Renal vasodilatation
angiotensin type 1 receptor antagonists, spontaneously hypertensive rats 147–154
Renin
gestational age, kidney 169–175
Renin–aldosterone axis
salt sensitivity, hypertension 155–161
Resistance arteries
nitric oxide, alcoholic cirrhosis 23–28
Respiratory frequency
spectral power 35–43
Salt
adrenomedullin, essential hypertension 293–298
Salt sensitivity
hypertension 155–161
Sarcolemma
glucose transport, insulin 591–599
Schizophrenia
genetic analysis 264–266
Secondary prevention
coronary heart disease 399–413, 773–774
Sepsis
neutrophils, total parenteral nutrition 371–374
Sero logic
Helicobacter pylori, cancer 219–223
Sex
metabolic risk factors, blood pressure 385–389
Sex hormones
menstrual cycle, vascular relaxation 163–168
Signal transduction
G-proteins, adenylate cyclase 527–537*
Singapore
genetic studies 264–266
progress in clinical research 247–266
Skeletal muscle blood flow
meal ingestion, insulin 415–423
Skin
\(\alpha\)-adrenergic receptors, reflex sympathetic dystrophy 73–77
Skin fibroblasts
intracellular pH, free cytosolic calcium 703–710
Skin microcirculation
diabetic foot, neuropathy 559–565
menstrual cycle 163–168
Sleep
blood pressure, ambulatory monitoring 45–50
Smoking
antioxidant enzyme, vitamin E 107–111
lymphocytes, cyclic AMP 621–626
Smooth muscle
nitric oxide, alcoholic cirrhosis 23–28
Sodium absorption
gallbladder, sodium/hydrogen exchanger 209–212
Sodium clearance
renal transplant recipients, cyclosporin A 489–496
Sodium depletion
frusemide 299–305
Sodium/hydrogen exchanger
gallbladder, sodium absorption 209–212
Sodium pump
hypokalaemic periodic muscle paralysis 261–264
Spectral power
autonomic nervous system, heart failure 35–43
Spectrophotometry
cardiac oxygenation, ischaemia 51–58
Spermatogenesis
growth factors 254–256
Spine
bone mineral density, postmenopausal women 307–312
Spiral laminar flow
vascular disease, ultrasound 17–21
Splanchnic oxygen uptake
amino acids, anaesthesia 431–439
Spontaneously hypertensive rats
oxidative metabolism, brain 539–550
renal vasodilatation, angiotensin type 1 receptor antagonists 147–154
Stable isotope
lymphocytes, protein synthesis 99–106
Stem cell production
human embryos 248–249
Stomach
chilli, capsaicin 252–254
Stroke
cholesterol, lipids 399–413, 773–774
Stroke volume
blood pressure, syncope 193–200
Subcellular fractionation
muscle wasting, zymosan 475–481
Sudden death
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Superoxide dismutase
diabetes 441–448
Surgery
Subject Index

lymphocytes, protein synthesis 99–106

Sustained loading
 inspiratory effort sensation, CO2
 responsiveness 513–518

Sympathetic nervous system
 blood pressure, sleep 45–50

Syndrome X
 artery, morphology 739–743

T-cell receptor genes
 nasopharyngeal carcinoma 256–258

T-helper 2 cytokines
 blood transfusion 519–523

T-lymphocytes
 autoimmunity, biliary cirrhosis 551–558

Therapeutic targets
 potassium channel openers 651–663*

Thermogenesis
 amino acids, anaesthesia 431–439

Thermoregulation
 a-adrenoceptor antagonist 627–631

Thyroid hormones
 cardiac muscle, nutritional iron deficiency 233–239

Thyrotoxic periodic paralysis
 sodium pump 261–264

Tissue repair
 lung transplantation 319–327

Tolerance
 T-lymphocytes, biliary cirrhosis 551–558

Total body water
 chronic kidney failure 763–769

Total parenteral nutrition
 neutrophils, sepsis 371–374

Transforming growth factor
 blood transfusion 519–523

Triacylglycerol metabolism
 creatine supplementation 113–118

Tryptophan
 Na+, K+-ATPase, gestational hypertension 719–723

Tubular function
 renal transplant recipients, cyclosporin A 489–496

Tumour necrosis factor
 nutrients, inflammation 121–130*
 pentoxifylline, cirrhosis 29–33

Tumour suppressor gene
 nasopharyngeal carcinoma 256–258

Ultrasound
 blood flow, vascular disease 17–21

Urinary bladder
 calcium antagonist 467–474

Urine state of saturation
 calcium nephrolithiasis, mineral water 313–318

Urogastrone
 cell proliferation, gastrointestinal tract 503–507

Vascular disease
 blood flow, ultrasound 17–21

Vascular relaxation
 sex hormones, menstrual cycle 163–168

Vascular tone
 menstrual cycle 163–168

Vasoconstriction
 thermoregulation, a-adrenoceptor antagonist 627–631

Vasodilatation
 diabetes, dyslipidaemia 567–573

Vasodilator peptides
 adrenomedullin 3–16*, 525

Vasopressin
 contractile response, octreotide 601–606

Veins
 nitric oxide, alcoholic cirrhosis 23–28

Ventilation
 almitrine 337–345

Ventricular pacing
 natriuretic peptides, neutral endopeptidase 283–291

Vitamin E
 antioxidant enzyme, smoking 107–111

inflammation, cytokines 121–130*

White-coat hypertension
 left ventricular function, echocardiography 275–281

Wine
 phenolic compounds, lipoprotein oxidation 449–458

X-ray absorptiometry
 chronic kidney failure 763–769

Zymosan
 muscle wasting, cytochrome c oxidase 475–481