ACKNOWLEDGMENTS

The Editorial Board of Clinical Science gratefully acknowledges the assistance given by the following referees during the year 1995.

Abernathy, D.
Agardh, E.
Agrotis, A.
Aitkenhead, A.R.
Ali, N.
Andersen, D.
Anderson, S.
Andrews, F.
Angelin, B.
Araki, S.
Archard, L.
Ardawi, M.S.M.
Arieff, A.I.
Armstrong, V.W.
Arnold, J.M.O.
Amqvist, H.
Arslanian, S.
Arthur, J.
Astarie Dequecker, C.
Bailey, R.R.
Baines, A.
Bankir, L.
Banks, R.
Barclay, R.
Baron, A.D.
Barradas, M.A.
Barrett, E.J.
Barton, H.
Bassie, J.E.
Batchelard, H.
Beaudouin-Legros, M.
Beavan, L.
Beckett, G.
Bell, J.
Belpaire, F.
Benjamin, N.
Bennett, A.
Berl, T.
Berner, C.
Besley, G.
Best, J.
Beynon, H.
Bharaj, H.S.
Bhatnagar, D.
Bie, P.
Bishop, J.
Bistrian, B.R.
Black, C.
Blomberg, P.
Bobik, A.
Boer, W.H.
Bolter, C.P.
Bonham, J.
Bolton, C.
Boot-Handford, R.
Boughton-Smith, N.K.
Boulanger, C.
Bowyer, D.E.
Brain, S.D.
Brands, M.
Brasseur, D.
Bray, M.D.
Bray, S.W.
Bray, S.
Bright, R.
Briggs, G.
Brinton, K.E.
Brodie, D.
Brown, N.
Breyer, M.D.
Bringhurst, F.R.
Brodin, K.
Brodin, R.
Brooke, J.
Brown, M.
Bruce, H.
Bruns, J.
Bruno, G.
Bucalossi, J.
Buckley, A.
Buchanan, C.
Bucy, P.
Bulman, C.
Bull, D.
Bundy, M.
Burdon, S.
Burke, K.
Burden, R.H.
Burgess, A.W.
Burrell, L.M.
Burton, D.
Bussel, B.
Butler, J.
Butterworth, J.
Buyse, M.
Buzby, R.
C.
L'Abbate, A.
Lacolley, P.
Lang, C.C.
Langley-Evans, S.C.
Lassen, N.A.
Laszlo, G.
Laurent, S.
Lazarus, J.H.
Lean, M.E.J.
Ledet, T.
Lennox, G.
Leonard, R.C.F.
Le Quan Sang, K.-H.
Lerman A.
Lipworth, B.J.
Lockwood, M.
Lombard, M.
Lombardi, F.
London, G.
Lowe, G.D.O.
Luke, R.
Lundholm, K.
Lyall, F.
Lydyard, P.M.
Macallan, D.
MacAllister, R.
Macdonald, I.A.
Macdonald, P.
MacFadyen, R.J.
MacNee, W.
Maggs, D.
Maling, T.J.B.
Malluche, H.
Manheim, K.
Mann, S.
Matthias, C.J.
Maxwell, S.R.J.
McClinton, S.
McConnell, A.K.
McGrath, B.
McGuinness, O.
McIntosh, R.S.
McLaughlin, P.J.
McLay, J.S.
McLindon, J.P.
McNally, P.
Meneilly, G.S.
Mihailidis, D.
Millar, J.A.
Miller, J.P.
Millward, D.J.
Mirman, A.
Mohanty, P.K.
Mol, M.J.
Moore, G.
Moore, K.
Morgan, M.Y.
Morris, C.
Morris, J.
Morrison, J.
Motwani, J.G.
Naismith, D.J.
Navi, G.J.
Neary, R.H.
Nemer, M.
Nestel, P.
Newham, D.J.
Newton, G.
Ng, L.L.
Nicholls, M.G.
Nilsson, H.
Niset, H.
Norman, R.I.
Novak, V.
Nussberger, J.
O'Brien, E.
O'Callaghan, C.
O'Connor, B.
Ohanian, J.
Olsen, N.V.
O'Morain, C.A.
O'Neil, G.
O'Rourke, M.F.
O'Saughnessy, K.
Ouchi, Y.
Owen, J.S.
Owen, O.E.
Pagani, M.
Palatini, P.
Pannier, B.
Parati, G.
Pare P.
Parfitt, V.
Parker, D.
Parving, H.-H.
Patel, A.
Paterson, C.
Paul, S.
Pavli, P.
Pedersen, O.
Pencharz, P.
Perrelli, M.
Piquette, C.
Pomfrett, C.J.D.
Por, J.N.
Poston, L.
Powell-Tuck, J.
Preedy, V.
Preuss, H.G.
Price, R.G.
Provoost, A.P.
Rabelink, A.
Rampton, D.S.
Reckelhoff, J.F.
Reeds, P.
Reid, J.
Rennie, M.J.
Rerat, A.
Rhodes, J.M.
Rhodes, P.
Rice-Evans, C.
Richard, V.
Ricen, W.F.
Riis Hansen, R.
Rippe, B.
Robbins, R.
Rodger, S.
Romero, J.C.
Ruddy, T.D.
Russell, D.
Russell, F.D.
Rutherford, O.
Ryder, S.
Sagnella, G.A.
Sainsbury, R.
Sands, J.M.
Saruta, T.
Saul, J.P.
Scherrer, U.
Schiffrin, E.L.
Schmieder, R.E.
Schofield, G.G.
Schuppan, D.
Schuyler, M.
Schwarer, A.P.
Selby, W.
Sever, P.
Shenklin, A.
Sheron, N.
Shibayama, Y.
Shioji, M.
Shiota, M.
Shore, A.
Silk, D.B.
Silverman, M.
Simmons, D.
Singer, D.R.J.
Skinner, S.L.
Smit, A.A.J.
Smyth, D.D.
Soutar, A.
Specchia, G.
Spurr, N.
Stalenhoef, A.
Stamp, T.
Starr, J.M.
Stjernstrom, H.
Strauer, B.E.
Strupe, K.O.
Svendsen, O.L.
Sugden, M.
Sundkvist, D.G.
Suzuki, H.
Takeda, K.
Takizawa, H.
Taskinen, M.-R.
Tattersfield, A.
Taylor, K.
Theodore, J.
Thien, Th.
Thompson, A.
Thompson, A.H.
Thorburn, A.
Thuraisingham, R.
Tighe, R.
Tomlinson, D.
Tooke, J.E.
Toska, K.
Tunny, A.N.
Turner, A.N.
Vallance, P.
van de Borne, P.

van Lieshout, J.J.
Van Rij, A.
van Zwieten, P.A.
Vanoli, E.
Vassart, G.
Vassort, G.
Vaz, M.
Verbolis, J.G.
Vetter, H.
Vos, P.
Vyas, H.
Wagenmakers, A.
Wahren, J.
Wallberg- Henrikson, H.
Walker, R.
Ward, S.A.
Wardland, A.J.
Warren, P.M.
Wastell, H.J.
Watson, A.M.
Watt, P.
Weaver, L.
Webb, D.J.
Weinberger, M.
Weise, F.
Wernerman, J.
West, M.
Westerman, R.
White, H.
Whiting, P.
Whyte, M.
Wieling, W.
Wilcox, J.N.
Winocour, P.
Wintour-Coghlan, M.
Winwood, P.J.
Woodsie, B.
Yanagisawa, M.
Yandle, T.
Yeaman, S.J.
Yin, J.A.L.
Young, V.
Zhou, J.
Zidek, W.
Zimmerman, G.
Zinman, B.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Meguid, E.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abdel-Tawab, S.</td>
<td>187–191</td>
</tr>
<tr>
<td>Abu-Amsha, R.</td>
<td>449–458</td>
</tr>
<tr>
<td>Aguiler, M.T.</td>
<td>155–161</td>
</tr>
<tr>
<td>Ainley, C.</td>
<td>219–223</td>
</tr>
<tr>
<td>Albert, J.</td>
<td>225–231</td>
</tr>
<tr>
<td>Allan, P.L.</td>
<td>17–21</td>
</tr>
<tr>
<td>Almada, A.L.</td>
<td>113–118</td>
</tr>
<tr>
<td>Amadi, A.A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Angel, S.E.</td>
<td>99–106</td>
</tr>
<tr>
<td>Armstrong, A.L.</td>
<td>763–769</td>
</tr>
<tr>
<td>Atucha, N.M.</td>
<td>739–743</td>
</tr>
<tr>
<td>Baker, G.</td>
<td>51–58</td>
</tr>
<tr>
<td>Barbara, L.</td>
<td>219–223</td>
</tr>
<tr>
<td>Barden, A.</td>
<td>711–718</td>
</tr>
<tr>
<td>Bassey, E.J.</td>
<td>685–690</td>
</tr>
<tr>
<td>Beilin, L.J.</td>
<td>449–458, 711–718</td>
</tr>
<tr>
<td>Bell, S.C.</td>
<td>169–175</td>
</tr>
<tr>
<td>Benn, J.</td>
<td>575–582</td>
</tr>
<tr>
<td>Bernard, C.</td>
<td>29–33</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>35–43</td>
</tr>
<tr>
<td>Bianchetti, M.G.</td>
<td>347–351</td>
</tr>
<tr>
<td>Binah, O.</td>
<td>233–239</td>
</tr>
<tr>
<td>Blakemore, S.J.</td>
<td>591–599</td>
</tr>
<tr>
<td>Bongso, A.</td>
<td>248–249</td>
</tr>
<tr>
<td>Boulton, R.</td>
<td>503–507</td>
</tr>
<tr>
<td>Bourgin, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Bradford, A.</td>
<td>337–345</td>
</tr>
<tr>
<td>Bragado, M.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Bragulat, E.</td>
<td>155–161</td>
</tr>
<tr>
<td>Bränström, R.</td>
<td>431–439</td>
</tr>
<tr>
<td>Brögiersen, A.</td>
<td>225–231</td>
</tr>
<tr>
<td>Brown, K.M.</td>
<td>107–111</td>
</tr>
<tr>
<td>Browne, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Brundin, T.</td>
<td>431–439</td>
</tr>
<tr>
<td>Bund, S.J.</td>
<td>739–743</td>
</tr>
<tr>
<td>Buvry, A.</td>
<td>319–327</td>
</tr>
<tr>
<td>Cacciafest, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cailmail, S.</td>
<td>29–33</td>
</tr>
<tr>
<td>Calverley, P.M.A.</td>
<td>513–518</td>
</tr>
<tr>
<td>Calvo, J.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Campbell, B.J.</td>
<td>359–364</td>
</tr>
<tr>
<td>Canali, C.</td>
<td>275–281</td>
</tr>
<tr>
<td>Carter, J.</td>
<td>513–518</td>
</tr>
<tr>
<td>Cartouzou, G.</td>
<td>209–212</td>
</tr>
<tr>
<td>Carver, J.G.</td>
<td>725–731</td>
</tr>
<tr>
<td>Caso, G.</td>
<td>99–106</td>
</tr>
<tr>
<td>Cassell, T.B.</td>
<td>509–512</td>
</tr>
<tr>
<td>Castleden, C.M.</td>
<td>467–474</td>
</tr>
<tr>
<td>Cattell, V.</td>
<td>375–384</td>
</tr>
<tr>
<td>Celli, V.</td>
<td>385–389</td>
</tr>
<tr>
<td>Cester, N.</td>
<td>719–723</td>
</tr>
<tr>
<td>Chadwick, I.G.</td>
<td>617–620</td>
</tr>
<tr>
<td>Chan, S.H.</td>
<td>256–258</td>
</tr>
<tr>
<td>Chan, S.Y.</td>
<td>250–252</td>
</tr>
<tr>
<td>Charles, C.J.</td>
<td>283–291</td>
</tr>
<tr>
<td>Chin-Dusting, J.</td>
<td>23–28</td>
</tr>
<tr>
<td>Christensen, N.J.</td>
<td>621–626</td>
</tr>
<tr>
<td>Chua, T.P.</td>
<td>391–398</td>
</tr>
<tr>
<td>Cipollina, M.R.</td>
<td>703–710</td>
</tr>
<tr>
<td>Claassen, J.A.H.R.</td>
<td>483–488</td>
</tr>
<tr>
<td>Claude, J.E.</td>
<td>513–518</td>
</tr>
<tr>
<td>Clark, M.L.</td>
<td>425–430</td>
</tr>
<tr>
<td>Coats, A.J.S.</td>
<td>391–398</td>
</tr>
<tr>
<td>Coca, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>Colombani, V.</td>
<td>209–212</td>
</tr>
<tr>
<td>Colombo, R.</td>
<td>391–398</td>
</tr>
<tr>
<td>Compston, J.E.</td>
<td>307–312</td>
</tr>
<tr>
<td>Connell, J.M.C.</td>
<td>65–71</td>
</tr>
<tr>
<td>Cook, H.T.</td>
<td>375–384</td>
</tr>
<tr>
<td>Coupland, C.A.C.</td>
<td>685–690</td>
</tr>
<tr>
<td>Cowley, A.J.</td>
<td>415–423</td>
</tr>
<tr>
<td>Crawley, J.</td>
<td>51–58</td>
</tr>
<tr>
<td>Crijs, F.R.L.</td>
<td>131–139</td>
</tr>
<tr>
<td>Critchley, J.A.J.H.</td>
<td>35–43</td>
</tr>
<tr>
<td>Croft, K.D.</td>
<td>449–458, 711–718</td>
</tr>
<tr>
<td>Curran, A.K.</td>
<td>337–345</td>
</tr>
<tr>
<td>D'Almeida, M.</td>
<td>29–33</td>
</tr>
<tr>
<td>Davies, P.S.W.</td>
<td>763–769</td>
</tr>
<tr>
<td>Day, J.M.E.</td>
<td>763–769</td>
</tr>
<tr>
<td>de Silva, H.A.</td>
<td>725–731</td>
</tr>
<tr>
<td>De Chazal, R.</td>
<td>169–175</td>
</tr>
<tr>
<td>De La Sierra, A.</td>
<td>155–161</td>
</tr>
<tr>
<td>De Leeuw, P.W.</td>
<td>163–168</td>
</tr>
<tr>
<td>De Propis, A.M.</td>
<td>385–389</td>
</tr>
<tr>
<td>De Rooij, M.J.M.</td>
<td>483–488</td>
</tr>
<tr>
<td>Del Mar Lluch, M.</td>
<td>155–161</td>
</tr>
<tr>
<td>Dessauer, C.W.</td>
<td>527–537</td>
</tr>
<tr>
<td>Di Bernardo, M.G.</td>
<td>385–389</td>
</tr>
<tr>
<td>Di Virgilio, F.</td>
<td>703–710</td>
</tr>
<tr>
<td>Dickinson, C.J.</td>
<td>539–550</td>
</tr>
<tr>
<td>Dimitriadou, V.</td>
<td>319–327</td>
</tr>
<tr>
<td>Ding, X.-J.</td>
<td>93–98</td>
</tr>
<tr>
<td>Dowling, R.H.</td>
<td>509–512</td>
</tr>
<tr>
<td>Drummond, P.D.</td>
<td>73–77</td>
</tr>
<tr>
<td>Dudley, F.</td>
<td>23–28</td>
</tr>
<tr>
<td>Duner, E.</td>
<td>703–710</td>
</tr>
<tr>
<td>Duthie, G.G.</td>
<td>107–111</td>
</tr>
<tr>
<td>Dutto, F.</td>
<td>313–318</td>
</tr>
<tr>
<td>Earnest, C.P.</td>
<td>113–118</td>
</tr>
<tr>
<td>El-Gamal, N.</td>
<td>627–631</td>
</tr>
<tr>
<td>Elliott, H.L.</td>
<td>65–71</td>
</tr>
<tr>
<td>Elliott, R.A.</td>
<td>467–474</td>
</tr>
<tr>
<td>Ellory, J.C.</td>
<td>353–358</td>
</tr>
<tr>
<td>Engelman, J.L.</td>
<td>500–512</td>
</tr>
<tr>
<td>Escourrou, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Espiner, E.A.</td>
<td>283–291</td>
</tr>
<tr>
<td>Essén, P.</td>
<td>99–106</td>
</tr>
<tr>
<td>Eto, T.</td>
<td>293–298</td>
</tr>
<tr>
<td>Fagbemi, O.S.</td>
<td>745–754</td>
</tr>
<tr>
<td>Farag, M.M.</td>
<td>187–191</td>
</tr>
<tr>
<td>Farmer, R.D.T.</td>
<td>87–92</td>
</tr>
<tr>
<td>Farzaneh, F.</td>
<td>213–218</td>
</tr>
<tr>
<td>Feigel, P.</td>
<td>45–50</td>
</tr>
<tr>
<td>Felzen, B.</td>
<td>233–239</td>
</tr>
<tr>
<td>Feng, Y.-H.</td>
<td>459–466</td>
</tr>
<tr>
<td>Finch, P.M.</td>
<td>73–77</td>
</tr>
<tr>
<td>Finnie, I.A.</td>
<td>359–364</td>
</tr>
<tr>
<td>Flanagan, G.J.</td>
<td>353–358</td>
</tr>
<tr>
<td>Forster, C.D.</td>
<td>425–430</td>
</tr>
<tr>
<td>Fortepiani, L.A.</td>
<td>733–738</td>
</tr>
<tr>
<td>Fowler, B.</td>
<td>79–86</td>
</tr>
<tr>
<td>Frank, S.M.</td>
<td>627–631</td>
</tr>
<tr>
<td>Frayn, K.N.</td>
<td>425–430, 679–683</td>
</tr>
<tr>
<td>Freestone, S.</td>
<td>177–185</td>
</tr>
<tr>
<td>Frick, G.</td>
<td>79–86</td>
</tr>
<tr>
<td>Frossard, N.</td>
<td>319–327</td>
</tr>
<tr>
<td>Frostell, C.</td>
<td>225–231</td>
</tr>
<tr>
<td>Gafter, U.</td>
<td>519–523</td>
</tr>
<tr>
<td>Garbarg, M.</td>
<td>319–327</td>
</tr>
<tr>
<td>Garcia, L.J.</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Garcia-Esthañ, J.</td>
<td>733–738</td>
</tr>
<tr>
<td>Garlick, P.J.</td>
<td>99–106</td>
</tr>
<tr>
<td>Gaskin, G.</td>
<td>329–335</td>
</tr>
<tr>
<td>Gerolami, A.</td>
<td>209–212</td>
</tr>
<tr>
<td>Ghosh, S.</td>
<td>213–218</td>
</tr>
<tr>
<td>Gibson, A.</td>
<td>633–638</td>
</tr>
<tr>
<td>Gilman, A.G.</td>
<td>527–537</td>
</tr>
<tr>
<td>Giner, V.</td>
<td>155–161</td>
</tr>
<tr>
<td>Giordano, A.</td>
<td>391–398</td>
</tr>
<tr>
<td>Glenville, B.</td>
<td>51–58</td>
</tr>
<tr>
<td>Goldman, J.M.</td>
<td>329–335</td>
</tr>
</tbody>
</table>
Subject Index

First and last page numbers of papers to which entries refer are given. Page numbers marked with an asterisk refer to Reviews.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidental falls oestrogen replacement therapy</td>
<td>685–690</td>
</tr>
<tr>
<td>Acetylcholine endothelium, Syndrome X</td>
<td>739–743</td>
</tr>
<tr>
<td>nitric oxide, liver cirrhosis</td>
<td>733–738</td>
</tr>
<tr>
<td>Action potential cardiac muscle, nutritional iron deficiency</td>
<td>233–239</td>
</tr>
<tr>
<td>Activation energy Na⁺, K⁺-ATPase, gestational hypertension</td>
<td>719–723</td>
</tr>
<tr>
<td>S-Adenosylhomocysteine metabolism</td>
<td>79–86</td>
</tr>
<tr>
<td>S-Adenosylmethionine metabolism</td>
<td>79–86</td>
</tr>
<tr>
<td>Adenylate cyclase G-proteins, signal transduction</td>
<td>527–537*</td>
</tr>
<tr>
<td>Adipose tissue microdialysis catecholamines</td>
<td>425–430</td>
</tr>
<tr>
<td>Adipose tissue blood flow body mass index</td>
<td>679–683</td>
</tr>
<tr>
<td>Adrenaline lymphocytes, cyclic AMP</td>
<td>612–626</td>
</tr>
<tr>
<td>α-Adrenergic receptors skin, reflex sympathetic dystrophy</td>
<td>73–77</td>
</tr>
<tr>
<td>Adrenergic β₂-receptors lymphocytes, noradrenaline</td>
<td>621–626</td>
</tr>
<tr>
<td>α-Adrenoceptor antagonist thermoregulation</td>
<td>627–631</td>
</tr>
<tr>
<td>Adrenomedullin G-protein-linked receptors, cyclic AMP</td>
<td>3–16*, 525</td>
</tr>
<tr>
<td>salt, essential hypertension</td>
<td>293–298</td>
</tr>
<tr>
<td>Ageing lymphocytes, cyclic AMP</td>
<td>621–626</td>
</tr>
<tr>
<td>Alcohol pancreatitis-associated protein messenger RNA</td>
<td>213–218</td>
</tr>
<tr>
<td>Alcoholic cirrhosis nitric oxide</td>
<td>23–28</td>
</tr>
<tr>
<td>Aliphatic amines renal failure, choline transport</td>
<td>353–358</td>
</tr>
<tr>
<td>Alkalosis hyperventilation, magnesium</td>
<td>347–351</td>
</tr>
<tr>
<td>Almitrine ventilation, muscle activity</td>
<td>337–345</td>
</tr>
<tr>
<td>Ambulatory blood pressure left ventricular function, hypertension</td>
<td>275–281</td>
</tr>
<tr>
<td>Ambulatory monitoring blood pressure, sleep</td>
<td>45–50</td>
</tr>
<tr>
<td>Amino acids inflammation, cytokines</td>
<td>121–130*</td>
</tr>
<tr>
<td>metabolism, vascular disease</td>
<td>79–86</td>
</tr>
<tr>
<td>renal transplant recipients, cyclosporin A</td>
<td>489–496</td>
</tr>
<tr>
<td>thermogenesis, anaesthesia</td>
<td>431–439</td>
</tr>
<tr>
<td>Aminoglycosides nephrotoxicity, non-steroidal anti-inflammatory drugs</td>
<td>187–191</td>
</tr>
<tr>
<td>Amylase release pancreatitis</td>
<td>365–369, 771</td>
</tr>
<tr>
<td>Anaesthesia amino acids, thermogenesis</td>
<td>431–439</td>
</tr>
<tr>
<td>Angina cholesterol, lipids</td>
<td>399–413, 773–774</td>
</tr>
<tr>
<td>Angiotensin II microalbuminuria, non-insulin-dependent diabetes</td>
<td>703–710</td>
</tr>
<tr>
<td>Angiotensin type 1 receptor antagonists renal vasodilatation, spontaneously hypertensive rats</td>
<td>147–154</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme genetic polymorphism, bradykinin</td>
<td>617–620</td>
</tr>
<tr>
<td>Antioxidant enzyme vitamin E, smoking</td>
<td>107–111</td>
</tr>
<tr>
<td>Antioxidants inflammation, cytokines</td>
<td>121–130*</td>
</tr>
<tr>
<td>Antisense oligodeoxynucleotides multidrug resistance</td>
<td>93–98</td>
</tr>
<tr>
<td>Aorta nitric oxide, liver cirrhosis</td>
<td>733–738</td>
</tr>
<tr>
<td>Arachidonic acid phospholipids, Crohn’s disease</td>
<td>509–512</td>
</tr>
<tr>
<td>Arterialization insulin sensitivity, forearm blood flow</td>
<td>65–71</td>
</tr>
<tr>
<td>Artery morphology, syndrome X</td>
<td>739–743</td>
</tr>
<tr>
<td>ATP synthesis</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

exercise, obesity 691–702
ATP-sensitive potassium channels 651–663*
potassium channel openers 651–663*
Atrial natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
salt, essential hypertension 293–298
potassium channel openers 651–663*
Autoantigen
T-lymphocytes, biliary cirrhosis 551–558
Autoimmunity
T-lymphocytes, biliary cirrhosis 551–558
Autonomic function
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Autonomic nervous system
heart failure, heart rate variability 391–398
heart failure, spectral power 35–43
Poincaré plot, heart rate variability 201–208
Autoregulation
Na+, K+-ATPase, ouabain 497–502
Balance
oestrogen replacement therapy 685–690
Baroreflex sensitivity
autonomic function, insulin-dependent diabetes mellitus 59–64
Bicarbonate-urea method
energy expenditure, human immunodeficiency virus infection 241–245
Biliary cirrhosis
autoimmunity, T-lymphocytes 551–558
Blastocyst transfer
human embryos 248–249
Bleeding time
inhaled nitric oxide 225–231
Blood flow
vascular disease, ultrasound 17–21
Blood pressure
ambulatory monitoring, sleep 45–50
stroke volume, syncope 193–200
Blood temperature
amino acids, anaesthesia 431–439
Blood transfusion
T-helper 2 cytokines, transforming growth factor 519–523
Body composition
chronic kidney failure 763–769
Body mass index
adipose tissue blood flow 679–683
Bone mineral density
postmenopausal women 307–312
Bone resorption
calcium nephrolithiasis, mineral water 313–318
Bradykinin
angiotensin-converting enzyme, genetic polymorphism 617–620
endothelium, Syndrome X 739–743
Brain
oxidative metabolism, hypertension 539–550
Brain natriuretic peptide
neutral endopeptidase, ventricular pacing 283–291
Breath-holding time
control of breathing, dyspnoea 755–761
Bronchial hyper-responsiveness
lung transplantation, mast cells 319–327
Bumetanide
Na⁺/K⁺/2Cl⁻ co-transport 725–731
Caerulein
pancreatitis, intracellular calcium 365–369, 771
Caffeic acid
lipoprotein oxidation, wine 449–458
Calcium
alkalosis, hyperventilation 347–351
Calcium antagonist
oxidants 459–466
urinary bladder 467–474
Calcium nephrolithiasis
mineral water 313–318
Calcium oxalate
urine state of saturation, calcium nephrolithiasis 313–318
Calcium phosphate
urine state of saturation, calcium nephrolithiasis 313–318
Calf muscle pump function
validation, chronic venous insufficiency 483–488
Cancer
eicosanoid production 264–266
Helicobacter pylori, serology 219–223
Capillaroscopy
microcirculation 131–139*
Capsaicin
chilli, stomach 252–254
Carbon dioxide
inspiratory effort sensation, sustained loading 513–518
recovery 665–677
Cardiac muscle
nutritional iron deficiency 233–239
Cardiac oxygenation
ischaemia, spectrophotometry 51–58
Catalase
diabetes 441–448
Catecholamines
adipose tissue, microdialysis 425–430
Cell adhesion
epidermal stem cells, integrins 141–146*
Cell adhesion molecules
 integrins 639–650
Cell differentiation
 epidermal stem cells 141–146
Cell division
 epidermal stem cells 141–146
Cell proliferation
 epidermal growth factor, gastrointestinal tract 503–507
Cerebral blood supply
 hypertension 539–550
Cerebrovascular disease
 hypertension 539–550
Cervical carcinoma
 DNA testing, papillomavirus 250–252
Chemiluminescence
 oxidants, calcium antagonist 459–466
Chemoreceptors
 heart failure, heart rate variability 391–398
Chilli
 capsaicin, stomach 252–254
Cholecystokinin 8
 intracellular calcium, pancreatitis 365–369, 771
Cholesterol
 coronary heart disease, lipids 399–413, 773–774
Cholesterol metabolism
 creatine supplementation 113–118
Choline transport
 renal failure, haemodialysis 353–358
Chronic kidney failure
 body composition 763–769
Chronic venous insufficiency
 calf muscle pump function, validation 483–488
Cirrhosis
 tumour necrosis factor-α, pentoxifylline 29–33
Clinical research
 progress in Singapore 247–266
Colonic mucin
 corticosteroids, nicotine 359–364
Contractile response
 portal hypertension, octreotide 601–606
Contractility
 cardiac muscle, nutritional iron deficiency 233–239
Control of breathing
 breath-holding time, dyspnoea 755–761
Coronary heart disease
 cholesterol, lipids 399–413, 773–774
Coronary risk
 lipids 399–413, 773–774
Corticosteroids
 mucin, colon 359–364
Creatine supplementation
 lipid metabolism 113–118
Crohn’s disease
 fatty acids, phospholipids 509–512
Cromakalim
 therapeutic targets 651–663
CV-11974
 renal vasodilatation, spontaneously hypertensive rats 147–154
Cyclic AMP
 G-protein-linked receptors, adrenomedullin 3–16*, 525
 G-proteins, signal transduction 527–537
 lymphocytes, noradrenaline 621–626
Cyclic GMP
 inhaled nitric oxide 225–231
 neutral endopeptidase, ventricular pacing 283–291
Cyclosporin A
 renal transplant recipients 489–496
Cytochrome aa₃
 ischaemia, spectrophotometry 51–58
Cytochrome c oxidase
 muscle wasting, zymosan 475–481
Cytokine
 pentoxifylline, cirrhosis 29–33
Cytokines
 nutrients, inflammation 121–130
Densitometry
 chronic kidney failure 763–769
Dermis
 α-adrenergic receptors, reflex sympathetic dystrophy 73–77
Diabetes
 endothelium, dyslipidaemia 567–573
 microcirculation 131–139
 oxidative stress 441–448
 oxidative stress, glyoxylase 575–582
Diabetes mellitus
 baroreflex sensitivity, autonomic function 59–64
Diabetic foot
 skin microcirculation, neuropathy 559–565
Diaphragm
 almitrine, electromyography 337–345
Diclofenac sodium
 nephrotoxicity, gentamicin 187–191
DNA testing
 papillomavirus, cervical carcinoma 250–252
Dopamine
 5-hydroxytryptamine, renal sodium excretion 177–185
 renal transplant recipients, cyclosporin A 489–496
Dyslipidaemia
 diabetes, endothelium 567–573
Dyspnoea
control of breathing, breath-holding time 755–761
Echocardiography
 left ventricular function, hypertension 275–281
EEG arousal
 blood pressure, sleep 45–50
Eicosanoid production
 hypertension, cancer 264–266
Electromyography
 muscle activity, almitrine 337–345
Embryos
 blastocyst transfer, stem cell production 248–249
Endothelin
 salt, essential hypertension 293–298
Endothelin peptides
 human kidney 267–273*
Endothelin receptors
 human kidney 267–273*
Endothelium
 diabetes, dyslipidaemia 567–573
 phenylephrine, liver cirrhosis 733–738
 Syndrome X 739–743
Energy expenditure
 bicarbonate-urea method, human immunodeficiency virus infection 241–245
Epidermal growth factor
 cell proliferation, gastrointestinal tract 503–507
Epidermal stem cells
 cell adhesion, integrins 141–146*
Epidermis
 \(\alpha \)-adrenergic receptors, reflex sympathetic dystrophy 73–77
Epilepsy
 genetic analysis 264–266
Erythropoietin dysregulation
 renal failure 258–260
Essential hypertension
 salt, adrenomedullin 293–298
Exercise
 ATP synthesis, obesity 691–702
EXP 3174
 renal vasodilatation, spontaneously hypertensive rats 147–154
Familial hypokalaemic periodic paralysis
 sodium pump 261–264
Fatiguability
 cytochrome \(c \) oxidase, zymosan 475–481
Fatigue
 inspiratory effort sensation, \(\text{CO}_2 \) responsiveness 513–518
Fats
 inflammation, cytokines 121–130*
Fatty acids
 phospholipids, Crohn's disease 509–512
Fetal programming
 maternal nutrition, hypertension 607–615
Fetuses
 gestational age, kidney 169–175
Fibroblasts
 intracellular pH, free cytosolic calcium 703–710
Flooding dose
 muscle wasting, zymosan 475–481
Fluidity
 \(\text{Na}^+, \text{K}^+-\text{ATPase} \), gestational hypertension 719–723
Fluoxetine
 5-hydroxytryptamine, platelet aggregation 87–92
Forearm blood flow
 arterialization 65–71
 menstrual cycle 163–168
Free cytosolic calcium
 microalbuminuria, non-insulin-dependent diabetes 703–710
Fruconide
 sodium depletion 299–305
Gallbladder
 sodium/hydrogen exchanger, sodium absorption 209–212
Gastrointestinal tract
 cell proliferation, epidermal growth factor 503–507
Gene expression
 pancreatitis-associated protein, mouse intestine 213–218
Genetic analysis
 research in Singapore 264–266
Genetic polymorphism
 angiotensin-converting enzyme, bradykinin 617–620
Geniohyoid
 almitrine, electromyography 337–345
Gentamicin
 nephrotoxicity, non-steroidal anti-inflammatory drugs 187–191
Gestational age
 renin, kidney 169–175
Gestational hypertension
 \(\text{Na}^+, \text{K}^+-\text{ATPase} \) 719–723
Glomerular filtration rate
 renal transplant recipients, cyclosporin A 489–496
Glomerulonephritis
 IgA nephropathy 258–260
Glucocorticoids
 fetal programming, hypertension 607–615
Glucose transport
 sarcolemma, insulin 591–599
Gludopa
renal metabolism 177–185
γ-L-Glutamyl-5-hydroxy-L-tryptophan
renal metabolism 177–185
Glutathione
antioxidants, cytokines 121–130*
Glutathione peroxidase
diabetes 441–448
Glycogenolysis
exercise, obesity 691–702
Glyoxal
diabetes, oxidative stress 575–582
Glyoxylase
diabetes, oxidative stress 575–582
G-protein-linked receptors
adrenomedullin, cyclic AMP 3–16*, 525
G-proteins
signal transduction, adenylate cyclase 527–537*
Granulocyte activation
inflammatory disease 329–335
Granulocyte pool
111In-99mTc-labelled granulocytes, inflammatory
disease 329–335
Grape juice
phenolic compounds, lipoprotein oxidation 449–458
Growth hormone
male infertility 254–256
Haemodialysis
blood transfusion 519–523
renal failure, choline transport 353–358
Haemodynamics
ischaemia, spectrophotometry 51–58
meal ingestion, insulin 415–423
neutral endopeptidase, ventricular pacing 283–291
pentoxifylline, cirrhosis 29–33
Heart failure
adrenomedullin 3–16*, 525
autonomic nervous system, spectral power 35–43
heart rate variability, autonomic nervous system 391–398
Heart rate
blood pressure, sleep 45–50
Heart rate variability
autonomic nervous system, spectral power 35–43
heart failure, autonomic nervous system 391–398
Poincaré plot, parasympathetic nervous system 201–208
Helicobacter pylori
serology, cancer 219–223
High-performance liquid chromatography
non-transferrin-bound iron, preterm babies 633–638
Hip
bone-mineral density, postmenopausal women 307–312
Homocysteine
metabolism 79–86
Hormone replacement therapy
bone mineral density, postmenopausal women 307–312
Human immunodeficiency virus infection
energy expenditure, bicarbonate-urea method 241–245
Human leucocyte antigens
nasopharyngeal carcinoma 256–258
5-Hydroxytryptamine
dopamine, renal sodium excretion 177–185
platelet aggregation, fluoxetine 87–92
Hyperglycaemia
insulin release, muscle strength 583–589
Hyperinsulinaemic euglycaemic clamp
insulin sensitivity, arterialization 65–71
Hypertension
adrenomedullin 3–16*, 525
contractile response, octreotide 601–606
eicosanoid production 264–266
fetal programming, maternal nutrition 607–615
left ventricular function,
echocardiography 275–281
microcirculation 131–139*
Na⁺, K⁺-ATPase, ouabain 497–502
oxidative metabolism, brain 539–550
renin, gestational age 169–175
salt, adrenomedullin 293–298
salt sensitivity 155–161
Hyperventilation
alkalosis, magnesium 347–351
Hypokalaemic periodic paralysis
insulin release 583–589
sodium pump 261–264
Hypometabolism
amino acids, anaesthesia 431–439
Hypotension
stroke volume, syncope 193–200
Hypothermia
α-adrenoceptor antagonist 627–631
amino acids, anaesthesia 431–439
Hypothermic preservation
rat heart, protein kinase C inhibitors 745–754
Hypoxia
pancreatitis-associated protein messenger RNA 213–218
Ibuprofen
nephrotoxicity, gentamicin 187–191
IgA nephropathy
primary glomerulonephritis 258–260
Immune complex disease
 inflammation mediators, nitric oxide 375–384*
Immunity
 nitric oxide 375–384*
Immunostaining
 mast cells, lung transplantation 319–327
 111In-99mTc-labelled granulocytes
 lung granulocyte pool, inflammatory
disease 329–335
Infertility
 growth hormone 254–256
Inflammation
 nutrients, cytokines 121–130*
Inflammation mediators
 nitric oxide, immune complex disease 375–384*
Inflammatory disease
 granulocyte activation, lung granulocyte
 pool 329–335
Inhaled nitric oxide
 platelet function 225–231
Innervation
 lung transplantation 319–327
Inspiratory effort sensation
 CO_2 responsiveness, sustained loading 513–518
Insulin
 adipose tissue blood flow 679–683
 glucose transport, sarcolemma 591–599
 microalbuminuria, non-insulin-dependent
diabetes 703–710
 regional haemodynamics, meal
 ingestion 415–423
Insulin release
 hypokalaemic periodic paralysis 583–589
Insulin sensitivity
 arterialization 65–71
Insulin-dependent diabetes mellitus
 baroreflex sensitivity, autonomic function 59–64
Integrins
 cell adhesion, epidermal stem cells 141–146*
 cell adhesion molecules 639–650*
Interleukin
 blood transfusion 519–523
 nutrients, inflammation 121–130*
Intracellular calcium
 pancreatitis 365–369, 771
Intracellular pH
 microalbuminuria, non-insulin-dependent
diabetes 703–710
Intravenous nutrition
 epidermal growth factor 503–507
Intravital microscopy
 microcirculation 131–139*
Inulin clearance
 menstrual cycle 163–168
Iron deficiency
 pancreatitis-associated protein
 messenger RNA 213–218
Iron overload
 pancreatitis-associated protein
 messenger RNA 213–218
Ischaemia
 cardiac oxygenation, spectrophotometry 51–58
 oxidants, calcium antagonist 459–466
Iso-electric focusing
 serology, cancer 219–223
Iso-prostane
 lipid peroxidation, pregnancy 711–718
Keratinocytes
 epidermal stem cells 141–146*
Kidney
 endothelins 267–273*
 fetal programming, hypertension 607–615
 renin, gestational age 169–175
Labelled carbon dioxide
 recovery 665–77
Left ventricular function
 echocardiography, hypertension 275–281
Lipid
 neutrophils, sepsis 371–374
Lipid metabolism
 creatinine supplementation 113–118
Lipid peroxidation
 diabetes 441–448
 pre-eclampsia, pregnancy 711–718
 vitamin E, smoking 107–111
Lipids
 coronary heart disease, cholesterol 399–413,
 773–774
Lipoprotein oxidation
 phenolic compounds, wine 449–458
Lithium clearance
 renal transplant recipients, cy closporin A 489–496
Liver
 autoimmunity, T-lymphocytes 551–558
Liver cirrhosis
 phenylephrine, nitric oxide 733–738
Loop of Henle
 sodium depletion, frusemide 299–305
Loss of label
 carbon dioxide 665–677
Lung granulocyte pool
 111In-99mTc-labelled granulocytes, inflammatory
disease 329–335
Lung transplantation
 mast cells, bronchial
 hyper-responsiveness 319–327
Lymphocytes
 cyclic AMP, noradrenaline 621–626
 protein synthesis, stable isotope 99–106
Magnesium
 alkalosis, hyperventilation 347–351
Magnetic resonance spectroscopy
 ATP synthesis 691–702
Male infertility
 growth hormone 254–256
Mast cells
 lung transplantation, bronchial
 hyper-responsiveness 319–327
Maternal nutrition
 fetal programming, hypertension 607–615
Meal ingestion
 regional haemodynamics, insulin 415–423
Mean arterial pressure
 metabolic risk factors, sex 385–389
Membrane
 sarcolemma, glucose transport 591–599
 cardiac muscle, nutritional iron
deficiency 233–239
Menstrual cycle
 sex hormones, vascular relaxation 163–168
Mesenteric artery
 contractile response, octreotide 601–606
Messenger RNA
 pancreatitis-associated protein, mouse
 intestine 213–218
 metabolic risk factors, blood pressure, sex 385–389
Metabolism
 amino acids, vascular disease 79–86
 thermoregulation, α-adrenoceptor antagonist 627–631
Methodology
 labelled carbon dioxide, recovery 665–677
Methylglyoxal
 diabetes, oxidative stress 575–582
5-Methyltetrahydrofolate
 metabolism 79–86
Microalbuminuria
 intracellular pH, free cytosolic calcium 703–710
Microcirculation
 cardiovascular disease 131–139*
 diabetic foot, neuropathy 559–565
Microdialysis
 adipose tissue, catecholamines 425–430
Microperfusion
 loop of Henle, frusemide 299–305
Micropuncture
 sodium depletion, frusemide 299–305
Mineral water
 calcium nephrolithiasis 313–318
Mitochondria
 ischaemia, spectrophotometry 51–58
Morphology
 artery, Syndrome X 739–743
Mouse intestine
 pancreatitis-associated protein, messenger RNA 213–218
Mucin
corticosteroids, nicotine 359–364
Multidrug resistance
 antisense oligodeoxynucleotides 93–98
Muscle
 oestrogen replacement therapy 685–690
 exercise, obesity 691–702
Muscle strength
 hypokalaemic periodic paralysis 583–589
 wasting 475–481
Myocardial infarction
 cholesterol, lipids 399–413, 773–774
Na+/K+/2Cl– co-transport
 platelets 725–731
Na+, K+-ATPase
 gestational hypertension 719–723
 ouabain, hypertension 497–502
Nasopharyngeal carcinoma
 human leucocyte antigens 256–258
Natriuresis
 adrenomedullin 3–16*, 525
 neutral endopeptidase, ventricular pacing 283–291
Natriuretic peptides
 neutral endopeptidase, ventricular pacing 283–291
Natural killer cells
 cyclic AMP, noradrenaline 621–626
Nephrotoxicity
 gentamicin, non-steroidal anti-inflammatory drugs 187–191
Neuropathy
 diabetic foot, skin microcirculation 559–565
 neutral endopeptidase, ventricular pacing 283–291
Neutrophils
 total parenteral nutrition, sepsis 371–374
Nicotine
 mucin, colon 359–364
Nitric oxide
 alcoholic cirrhosis 23–28
 diabetes, dyslipidaemia 567–573
 immunity 375–384*
 phenylephrine, liver cirrhosis 733–738
 platelet function 225–231
Nitric oxide synthase
 immunity 375–384*
Non-insulin-dependent diabetes
 intracellular pH, free cytosolic calcium 703–710
Non-steroidal anti-inflammatory drugs
 nephrotoxicity, gentamicin 187–191
Non-transferrin-bound iron
 high-performance liquid chromatography, preterm babies 633–638
Noradrenaline
 lymphocytes, cyclic AMP 621–626
Subject Index

salt sensitivity, hypertension 155–161
Nutrients
 inflammation, cytokines 121–130 *
Nutritional iron deficiency
 cardiac muscle 233–239
Obesity
 adipose tissue blood flow 679–683
 ATP synthesis, exercise 691–702
Octrétide
 contractile response, portal hypertension 601–606
Oestrogen replacement therapy
 muscle, balance 685–690
Ouabain
 Na+, K+-ATPase, hypertension 497–502
Oxidants
 calcium antagonist 459–466
Oxidation
 exercise, obesity 691–702
Oxidative metabolism
 brain, hypertension 539–550
Oxidative stress
 diabetes 441–448
 diabetes, glyoxylase 575–582
Oxygen consumption
 oxidants, calcium antagonist 459–466
Pancreatic acinar cells
 intracellular calcium, pancreatitis 365–369, 771
Pancreatitis
 intracellular calcium 365–369, 771
 pancreatitis-associated protein messenger RNA, mouse intestine 213–218
Papillomavirus
 DNA testing, cervical carcinoma 250–252
Para-aminohippurate clearance
 menstrual cycle 163–168
Parasympathetic nervous system
 Poincaré plot, heart rate variability 201–208
Parenteral nutrition
 epidermal growth factor 503–507
Pentoxifylline
 tumour necrosis factor-α, cirrhosis 29–33
Phagocytosis
 oxidants, calcium antagonist 459–466
Phenolic compounds
 lipoprotein oxidation, wine 449–458
Phentolamine
 thermoregulation 627–631
Phenylephrine
 contractile response, octreotide 601–606
 nitric oxide, liver cirrhosis 733–738
Phosphocreatine breakdown
 exercise, obesity 691–702
Phospholipids
 fatty acids, Crohn’s disease 509–512
Physical activity
 bicarbonate-urea method, human immunodeficiency virus infection 241–245
 Physical fitness
 lymphocytes, cyclic AMP 621–626
Phenacidiol
 insulin release, muscle strength 583–589
Placenta
 Na+, K+-ATPase, gestational hypertension 719–723
Platelet aggregation
 5-hydroxytryptamine, fluoxetine 87–92
 inhaled nitric oxide 225–231
Platelets
 Na+/K+/2Cl– co-transport 725–731
Plethysmography
 calf muscle pump function 483–488
 forearm blood flow, arterialization 65–71
Poincaré plot
 parasympathetic nervous system, heart rate variability 201–208
Polymerase chain reaction
 renal endotheilins 267–273 *
Portal hypertension
 contractile response, octreotide 601–606
 pentoxifylline, cirrhosis 29–33
Post-menopause
 oestrogen replacement therapy 685–690
Post-thrombotic syndrome
 calf muscle pump function, validation 483–488
Postmenopausal women
 bone mineral density 307–312
Posture
 spectral power 35–43
Potassium
 alkalosis, hyperventilation 347–351
Potassium channel openers
 therapeutic targets 651–663 *
Pre-eclampsia
 lipid peroxidation 711–718
Pregnancy
 lipid peroxidation 711–718
Pressure natriuresis
 Na+, K+-ATPase, ouabain 497–502
Preterm babies
 non-transferrin-bound iron, high-performance liquid chromatography 633–638
Primary prevention
 coronary heart disease 399–413, 773–774
Protease
 mast cells, lung transplantation 319–327
Protein kinase C inhibitors
 rat heart, hypothermic preservation 745–754
Protein synthesis
 lymphocytes, stable isotope 99–106
Pulse pressure
 metabolic risk factors, sex 385–389
Rat heart
 hypothermic preservation, protein kinase C inhibitors 745–754
Recovery
labelled carbon dioxide 665–677
Reflex sympathetic dystrophy
\(\alpha\)-adrenergic receptors, skin 73–77
Renal endothelins
quantitative polymerase chain reaction analysis 267–273*
Renal failure
choline transport, haemodialysis 353–358
erythropoietin dysregulation 258–260
Renal plasma flow
renal transplant recipients, cyclosporin A 489–496
Renal sodium excretion
dopamine, 5-hydroxytryptamine 177–185
Renal transplant recipients
amino acids, dopamine 489–496
Renal tubule
sodium depletion, frusemide 299–305
Renal vasodilatation
angiotensin type 1 receptor antagonists, spontaneously hypertensive rats 147–154
Renin
gestational age, kidney 169–175
Renin–aldosterone axis
salt sensitivity, hypertension 155–161
Resistance arteries
nitric oxide, alcoholic cirrhosis 23–28
Respiratory frequency
spectral power 35–43
Salt
adrenomedullin, essential hypertension 293–298
Salt sensitivity
hypertension 155–161
Sarcolemma
glucose transport, insulin 591–599
Schizophrenia
genetic analysis 264–266
Secondary prevention
coronary heart disease 399–413, 773–774
Sepsis
neutrophils, total parenteral nutrition 371–374
Serology
Helicobacter pylori, cancer 219–223
Sex
metabolic risk factors, blood pressure 385–389
Sex hormones
menstrual cycle, vascular relaxation 163–168
Signal transduction
G-proteins, adenylate cyclase 527–537*
Singapore
genetic studies 264–266
progress in clinical research 247–266
Skeletal muscle blood flow
meal ingestion, insulin 415–423
Skin
\(\alpha\)-adrenergic receptors, reflex sympathetic dystrophy 73–77
Skin fibroblasts
intracellular pH, free cytosolic calcium 703–710
Skin microcirculation
diabetic foot, neuropathy 559–565
menstrual cycle 163–168
Sleep
blood pressure, ambulatory monitoring 45–50
Smoking
antioxidant enzyme, vitamin E 107–111
lymphocytes, cyclic AMP 621–626
Smooth muscle
nitric oxide, alcoholic cirrhosis 23–28
Sodium absorption
gallbladder, sodium/hydrogen exchanger 209–212
Sodium clearance
renal transplant recipients, cyclosporin A 489–496
Sodium depletion
frusemide 299–305
Sodium/hydrogen exchanger
gallbladder, sodium absorption 209–212
Sodium pump
hypokalaemic periodic muscle paralysis 261–264
Spectral power
autonomic nervous system, heart failure 35–43
Spectrophotometry
cardiac oxygenation, ischaemia 51–58
Spermatogenesis
growth factors 254–256
Spine
bone mineral density, postmenopausal women 307–312
Spiral laminar flow
vascular disease, ultrasound 17–21
Splanchnic oxygen uptake
amino acids, anaesthesia 431–439
Spontaneously hypertensive rats
oxidative metabolism, brain 539–550
renal vasodilatation, angiotensin type 1 receptor antagonists 147–154
Stable isotope
lymphocytes, protein synthesis 99–106
Stem cell production
human embryos 248–249
Stomach
chilli, capsaicin 252–254
Stroke
cholesterol, lipids 399–413, 773–774
Stroke volume
blood pressure, syncope 193–200
Subcellular fractionation
muscle wasting, zymosan 475–481
Sudden death
baroreflex sensitivity, insulin-dependent diabetes mellitus 59–64
Superoxide dismutase
diabetes 441–448
Surgery
Subject Index

lymphocytes, protein synthesis 99–106
Sustained loading
 inspiratory effort sensation, CO₂ responsiveness 513–518
Sympathetic nervous system
 blood pressure, sleep 45–50
Syncope
 blood pressure, stroke volume 193–200
Syndrome X
 artery, morphology 739–743
T-cell receptor genes
 nasopharyngeal carcinoma 256–258
T-helper 2 cytokines
 blood transfusion 519–523
T-lymphocytes
 autoimmunity, biliary cirrhosis 551–558
Therapeutic targets
 potassium channel openers 651–663*
Thermogenesis
 amino acids, anaesthesia 431–439
Thermoregulation
 α-adrenoceptor antagonist 627–631
Thyroid hormones
 cardiac muscle, nutritional iron deficiency 233–239
Thyrotoxic periodic paralysis
 sodium pump 261–264
Tissue repair
 lung transplantation 319–327
Tolerance
 T-lymphocytes, biliary cirrhosis 551–558
Total body water
 chronic kidney failure 763–769
Total parenteral nutrition
 neutrophils, sepsis 371–374
Transforming growth factor
 blood transfusion 519–523
Triacylglycerol metabolism
 creatine supplementation 113–118
Tryptophan
 Na⁺, K⁺-ATPase, gestational hypertension 719–723
Tubular function
 renal transplant recipients, cyclosporin A 489–496
Tumour necrosis factor
 nutrients, inflammation 121–130*
 pentoxifylline, cirrhosis 29–33

Tumour suppressor gene
 nasopharyngeal carcinoma 256–258
Ultrasound
 blood flow, vascular disease 17–21
Urinary bladder
 calcium antagonist 467–474
Urinary state of saturation
 calcium nephrolithiasis, mineral water 313–318
Urogastrone
 cell proliferation, gastrointestinal tract 503–507
Vascular disease
 blood flow, ultrasound 17–21
 metabolism, amino acids 79–86
Vascular relaxation
 sex hormones, menstrual cycle 163–168
Vascular tone
 menstrual cycle 163–168
Vasoconstriction
 thermoregulation, α-adrenoceptor antagonist 627–631
Vasodilatation
 diabetes, dyslipidaemia 567–573
Vasodilator peptides
 adrenomedullin 3–16*, 525
Vasopressin
 contractile response, octreotide 601–606
Veins
 nitric oxide, alcoholic cirrhosis 23–28
Ventricular pacing
 natriuretic peptides, neutral endopeptidase 283–291
Vitamin E
 antioxidant enzyme, smoking 107–111
 inflammation, cytokines 121–130*
White-coat hypertension
 left ventricular function, echocardiography 275–281
Wine
 phenolic compounds, lipoprotein oxidation 449–458
X-ray absorptiometry
 chronic kidney failure 763–769
Zymosan
 muscle wasting, cytochrome c oxidase 475–481