<table>
<thead>
<tr>
<th>Author</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Halim, S.M.</td>
<td>301-306</td>
</tr>
<tr>
<td>Abe, Y.</td>
<td>581-585</td>
</tr>
<tr>
<td>Adams, L.</td>
<td>453-461</td>
</tr>
<tr>
<td>Aderka, D.</td>
<td>365-369</td>
</tr>
<tr>
<td>Akaoka, I.</td>
<td>203-210</td>
</tr>
<tr>
<td>Albert, A.</td>
<td>149-157</td>
</tr>
<tr>
<td>Alexander, G.J.M.</td>
<td>263-268</td>
</tr>
<tr>
<td>Alexander, S.L.</td>
<td>4-7</td>
</tr>
<tr>
<td>Anderson, S.E.</td>
<td>235-242</td>
</tr>
<tr>
<td>Andersson, K.</td>
<td>479-484</td>
</tr>
<tr>
<td>Appleyard, C.B.</td>
<td>713-717</td>
</tr>
<tr>
<td>Arrhenius-Nyberg. V.</td>
<td>285-292</td>
</tr>
<tr>
<td>Bäcker, A.</td>
<td>39-45</td>
</tr>
<tr>
<td>Baker, F.E.</td>
<td>405-412</td>
</tr>
<tr>
<td>Balbi, A.</td>
<td>331-336</td>
</tr>
<tr>
<td>Ballmer, P.E.</td>
<td>235-242</td>
</tr>
<tr>
<td>Barlet-Bas, C.</td>
<td>293-299</td>
</tr>
<tr>
<td>Barnes, P.J.</td>
<td>135-139</td>
</tr>
<tr>
<td>Beasley, R.</td>
<td>14-17</td>
</tr>
<tr>
<td>Beattie, A.D.</td>
<td>727-732</td>
</tr>
<tr>
<td>Bee, D.</td>
<td>325-330</td>
</tr>
<tr>
<td>Belcher, P.R.</td>
<td>269-275</td>
</tr>
<tr>
<td>Benard, D.C.</td>
<td>173-178</td>
</tr>
<tr>
<td>Benbow, S.J.</td>
<td>191-196</td>
</tr>
<tr>
<td>Benchetrit, G.</td>
<td>453-461</td>
</tr>
<tr>
<td>Berenson, C.S.</td>
<td>491-499</td>
</tr>
<tr>
<td>Beretz, A.</td>
<td>149-157</td>
</tr>
<tr>
<td>Berglund, H.</td>
<td>165-172</td>
</tr>
<tr>
<td>Bernardi, L.</td>
<td>103-109, 733</td>
</tr>
<tr>
<td>Bernheim, J.</td>
<td>623-627</td>
</tr>
<tr>
<td>Beshyah, S.A.</td>
<td>67-71</td>
</tr>
<tr>
<td>Besler, H.T.</td>
<td>59-66</td>
</tr>
<tr>
<td>Bevegård, S.</td>
<td>439-446</td>
</tr>
<tr>
<td>Bevilacqua, M.</td>
<td>331-336</td>
</tr>
<tr>
<td>Bevington, A.</td>
<td>405-412</td>
</tr>
<tr>
<td>Bhattacharya, D.</td>
<td>311-318</td>
</tr>
<tr>
<td>Bianchini, B.</td>
<td>103-109, 733</td>
</tr>
<tr>
<td>Biemond, B.J.</td>
<td>587-594</td>
</tr>
<tr>
<td>Biggs, T.</td>
<td>179-184</td>
</tr>
<tr>
<td>Bing, R.F.</td>
<td>307-310</td>
</tr>
<tr>
<td>Blendis, L.</td>
<td>525-531</td>
</tr>
<tr>
<td>Blumsohn, A.</td>
<td>243-244</td>
</tr>
<tr>
<td>Bodmer, C.W.</td>
<td>421-426</td>
</tr>
<tr>
<td>Boer, P.</td>
<td>351-358</td>
</tr>
<tr>
<td>Boer, W.H.</td>
<td>351-358</td>
</tr>
<tr>
<td>Bomzon, A.</td>
<td>525-531</td>
</tr>
<tr>
<td>Boomsma, F.</td>
<td>675-679</td>
</tr>
<tr>
<td>Borch-Johnsen, K.</td>
<td>629-633</td>
</tr>
<tr>
<td>Borzi, R.M.</td>
<td>371</td>
</tr>
<tr>
<td>Bossart, H.</td>
<td>607-610</td>
</tr>
<tr>
<td>Boulton, R.A.</td>
<td>119-130</td>
</tr>
<tr>
<td>Bradley, T.D.</td>
<td>173-178</td>
</tr>
<tr>
<td>Broom, J.</td>
<td>235-242</td>
</tr>
<tr>
<td>Brough, D.</td>
<td>405-412</td>
</tr>
<tr>
<td>Brouwer, A.</td>
<td>211-217</td>
</tr>
<tr>
<td>Brown, M.J.</td>
<td>571-580</td>
</tr>
<tr>
<td>Brunner, H.G.</td>
<td>533-542</td>
</tr>
<tr>
<td>Brunner, H.R.</td>
<td>607-610</td>
</tr>
<tr>
<td>Bryson, P.</td>
<td>595</td>
</tr>
<tr>
<td>Büler, H.R.</td>
<td>587-594</td>
</tr>
<tr>
<td>Bülow, J.</td>
<td>543-550</td>
</tr>
<tr>
<td>Burgess, C.</td>
<td>14-17</td>
</tr>
<tr>
<td>Burnier, M.</td>
<td>607-610</td>
</tr>
<tr>
<td>Burrell, L.M.</td>
<td>671-674</td>
</tr>
<tr>
<td>Cargill, R.I.</td>
<td>81-86</td>
</tr>
<tr>
<td>Carlens, P.</td>
<td>439-446</td>
</tr>
<tr>
<td>Carney, S.L.</td>
<td>197-201</td>
</tr>
<tr>
<td>Cerutti, C.</td>
<td>651-655</td>
</tr>
<tr>
<td>Chambers, S.T.</td>
<td>25-27</td>
</tr>
<tr>
<td>Chang, C.-J.</td>
<td>701-706</td>
</tr>
<tr>
<td>Cheng, P.-E.</td>
<td>701-706</td>
</tr>
<tr>
<td>Cheval, L.</td>
<td>293-299</td>
</tr>
<tr>
<td>Chinery, R.</td>
<td>401-403</td>
</tr>
<tr>
<td>Chou, L.</td>
<td>657-663</td>
</tr>
<tr>
<td>Chow, N.-H.</td>
<td>701-706</td>
</tr>
<tr>
<td>Chowienczyk, P.J.</td>
<td>111-117</td>
</tr>
<tr>
<td>Clarkson, P.B.M.</td>
<td>159-164</td>
</tr>
<tr>
<td>Cockcroft, J.R.</td>
<td>111-117</td>
</tr>
<tr>
<td>Cohen, E.</td>
<td>453-461</td>
</tr>
<tr>
<td>Connell, J.M.C.</td>
<td>563-570</td>
</tr>
<tr>
<td>Connor, J.M.</td>
<td>665-670</td>
</tr>
<tr>
<td>Constant, I.</td>
<td>95-102</td>
</tr>
<tr>
<td>Cooper, G.J.S.</td>
<td>7-12</td>
</tr>
<tr>
<td>Cortova, Z.</td>
<td>285-292</td>
</tr>
<tr>
<td>Coutie, W.</td>
<td>159-164</td>
</tr>
<tr>
<td>Crane, J.</td>
<td>14-17</td>
</tr>
<tr>
<td>Crofton, R.J.</td>
<td>727-732</td>
</tr>
<tr>
<td>Crotty, B.</td>
<td>51-57</td>
</tr>
<tr>
<td>Cuisinard, G.</td>
<td>651-655</td>
</tr>
<tr>
<td>Cummings, M.H.</td>
<td>225-233</td>
</tr>
<tr>
<td>Cundy, T.F.</td>
<td>12-14</td>
</tr>
<tr>
<td>Curry, G.</td>
<td>727-732</td>
</tr>
<tr>
<td>D'Inca, R.</td>
<td>727-732</td>
</tr>
<tr>
<td>Dallegri, F.</td>
<td>331-336</td>
</tr>
<tr>
<td>Dapino, P.</td>
<td>331-336</td>
</tr>
<tr>
<td>Davies, D.L.</td>
<td>665-670</td>
</tr>
<tr>
<td>De Bono, D.P.</td>
<td>635-641</td>
</tr>
<tr>
<td>De Hoyos, A.</td>
<td>173-178</td>
</tr>
<tr>
<td>De Leeuw, P.W.</td>
<td>421-426</td>
</tr>
<tr>
<td>De Quay, N.</td>
<td>607-610</td>
</tr>
<tr>
<td>De Roos, R.</td>
<td>351-358</td>
</tr>
<tr>
<td>Delacrétaz, E.</td>
<td>607-610</td>
</tr>
<tr>
<td>Deng, L.-Y.</td>
<td>611-622</td>
</tr>
<tr>
<td>Derkx, F.H.M.</td>
<td>675-679</td>
</tr>
<tr>
<td>Diaz, M.</td>
<td>345-350</td>
</tr>
<tr>
<td>Donald, R.A.</td>
<td>4-7</td>
</tr>
<tr>
<td>Dotan, I.</td>
<td>365-369</td>
</tr>
<tr>
<td>Doucet, A.</td>
<td>293-299</td>
</tr>
<tr>
<td>Drossos, G.E.</td>
<td>269-275</td>
</tr>
<tr>
<td>Ducher, M.</td>
<td>651-655</td>
</tr>
<tr>
<td>Durrington, P.N.</td>
<td>311-318</td>
</tr>
<tr>
<td>Dyerberg, J.</td>
<td>375-392</td>
</tr>
<tr>
<td>Eastell, R.</td>
<td>243-244</td>
</tr>
<tr>
<td>Eberhard, M.</td>
<td>557-562</td>
</tr>
<tr>
<td>Ebihara, I.</td>
<td>29-37</td>
</tr>
<tr>
<td>Edlund, A.</td>
<td>165-172</td>
</tr>
<tr>
<td>Eisenhofer, G.</td>
<td>533-542</td>
</tr>
<tr>
<td>El-Sayed, H.</td>
<td>463-470</td>
</tr>
<tr>
<td>Elghozzi, J.-L.</td>
<td>87-93, 95-102</td>
</tr>
<tr>
<td>Elia, M.</td>
<td>319-324</td>
</tr>
<tr>
<td>Ellis, M.J.</td>
<td>4-7</td>
</tr>
<tr>
<td>Emery, C.J.</td>
<td>325-330</td>
</tr>
<tr>
<td>Erne, P.</td>
<td>557-562</td>
</tr>
<tr>
<td>Ertl, R.F.</td>
<td>337-344</td>
</tr>
<tr>
<td>Espiner, E.A.</td>
<td>4-7, 18-21</td>
</tr>
<tr>
<td>Evans, M.J.</td>
<td>4-7</td>
</tr>
<tr>
<td>Fabbri, M.</td>
<td>371</td>
</tr>
<tr>
<td>Facchinini, A.</td>
<td>371</td>
</tr>
<tr>
<td>Fasano, L.</td>
<td>371</td>
</tr>
<tr>
<td>Fauvel, J.P.</td>
<td>651-655</td>
</tr>
<tr>
<td>Favre, H.</td>
<td>293-299</td>
</tr>
<tr>
<td>Feldt-Rasmussen, B.</td>
<td>629-633</td>
</tr>
<tr>
<td>Fell, G.S.</td>
<td>727-732</td>
</tr>
<tr>
<td>Féraillé, E.</td>
<td>293-299</td>
</tr>
<tr>
<td>Fisher, J.T.</td>
<td>345-350</td>
</tr>
<tr>
<td>Fotherby, M.D.</td>
<td>185-190</td>
</tr>
<tr>
<td>Foy, C.J.W.</td>
<td>665-670</td>
</tr>
</tbody>
</table>
Fransen, R. 351–358
Fraser, R. 563–570, 655–670
Friberg, P. 533–542
Friedland, J.S. 393–400
Friedmann, P.S. 191–196
Fukui, M. 29–37
Gaffney, D. 727–732
Gallacher, B. 141–147
Game, F.L. 311–318
Garlick, P.J. 235–242
Gibbons, L. 211–217
Gillies, A.H.B. 197–201
Girard, A. 95–102
Goldberg, G.R. 319–324
Goldstein, D.S. 533–542
Goode, H.F. 131–133
Goto, A. 413–419
Gourdie, R.G. 257–262
Graves, J.E. 519–524
Green, J. 623–627
Grigolo, B. 371
Grimble, R.F. 59–66, 485–489
Grenf, A. 301–306
Guerin, A.P. 87–93
Gundlach, A.L. 671–674
Gunn, I. 727–732
Gust, M.P. 651–655
Guz, A. 453–461
Hack, C.E. 587–594
Hainsworth, R. 463–470
Haller, R.G. 687–693
Hamada, M. 551–556
Hanson, P. 643–649
Harcombe, A.A. 263–268
Harrap, S.B. 665–670
Harlow, A. 581–585
Hattersley, J. 405–412
Hayakawa, H. 413–419
Haynes, W.G. 509–517
Hendriks, H.J.F. 211–217
Hennessy, T.R. 225–233
Henriksson, K.-G. 687–693
Hillier, K. 713–717
Hirata, Y. 413–419
Hitwada, K. 551–556
Hjelm, M. 135–139
Hjemdahl, P. 439–446
Hodgson, H.J.F. 119–130
Holmer, G. 375–392
Horan, M.A. 211–217
Houston, R.F. 359–364
Howard, P. 325–330
Howdle, P.D. 131–133
Huang, C.-M. 701–706
Hultman, E. 479–484
Hunter, K.A. 235–242
Hutchins, A.-M. 671–674
Inglis, G.C. 563–570
James, M.A. 185–190
Jamieson, A. 563–570
Janssen, M. 421–426
Jebb, S.A. 319–324
Jennings, G. 319–324
Jensen, G. 629–633
Jensen, J.S. 629–633
Jewell, D.P. 51–57
Jia, H. 571–580
Johnston, C.I. 671–674
Johnston, D.G. 67–71
Jones, J.A. 719–725
Jorfeldt, L. 687–693
Kangawa, K. 413–419
Karlsson, E. 285–292
Keller, U. 681–686
Kennedy, J.G. 235–242
Kennedy, D.G. 73–79, 471–477
Kennedy, S. 73–79, 471–477
Kharitonov, S.A. 135–139
Kilby, M.D. 311–318
Kimura, K. 413–419
Kindwall, E.P. 595–596
Koide, H. 29–37
Kokubun, S. 581–585
Koomans, H.A. 351–358, 719–725
Koskinas, J. 263–268
Koyama, S. 337–344
Kramer, H.J. 39–45
Kumpatula, P. 311–318
La Rovere, M.T. 103–109, 733
Laager, R. 681–686
Lahtela, J.T. 427–432
Lance, P. 491–499
Langley-Evans, S.C. 485–489
Larsson, K. 439–446
Laude, D. 95–102
Laude, E.A. 325–330
Lavalle, M. 651–655
Le Bidois, J. 95–102
Leikaf, G. 337–344
Lenders, J.W.M. 533–542
Leuzzi, S. 103–109, 733
Lever, A.F. 665–670
Levi, M. 587–594
Levo, Y. 365–369
Lewis, S.F. 687–693
Li, J.-S. 611–622
Lin, J.S.-N. 701–706
Lindley, K.J. 219–224
Lipworth, B.J. 81–86
Liu, P.P. 173–178
Livesey, J.H. 4–7
Lodwick, D. 665–670
Logan, A. 525–531
London, G.M. 87–93
Lubec, B. 135–139
Lubec, G. 135–139
Lyon, T.D.B. 727–732
MacDonald, T.M. 159–164
MacFarlane, I.A. 191–196
MacGregor, D. 671–674
Macleod, C. 159–164
Maestri, R. 103–109, 733
Mahy, I.R. 501–508
Malmf, K. 285–292
Mamet, R. 365–369
Man int't Veld, A.J. 675–679
Marc, I. 707–712
Marsy, S. 293–299
Martin, I.K. 301–306
Martin, V. 149–157
Marumoto, K. 551–556
Masood, A.R. 447–452
Matsuo, H. 413–419
Mauric, A. 635–641
McGaw, B.A. 727–732
McInnes, G.T. 433–437
Mckeever, M. 73–79, 471–477
McNurlan, M.A. 235–242
Meliconi, R. 371
Menys, V.C. 269–275
Milla, P.J. 219–224
Millar, E.A. 433–437
Millward, D.J. 597–606
Minoda, S. 203–210
Miqgadi, J.A. 491–499
Miyashita, H. 203–210
Molloy, A. 73–79, 471–477
Monteith, S. 571–580
Morrell, N.W. 179–184
Mortara, A. 103–109, 733
Mortola, J.P. 345–350
Mulberry, D.R. 219–224
Murphy, D.L. 533–542
Murphy, K. 453–461
Mustonen, J. 427–432
Muzulu, S.I. 307–310
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Najem, R.</td>
<td>651–655</td>
</tr>
<tr>
<td>Nakamura, T.</td>
<td>29–37</td>
</tr>
<tr>
<td>Naoumova, R.</td>
<td>225–233</td>
</tr>
<tr>
<td>Neary, R.H.</td>
<td>311–318</td>
</tr>
<tr>
<td>Ng, L.L.</td>
<td>695–700</td>
</tr>
<tr>
<td>Nicholls, M.G.</td>
<td>18–21</td>
</tr>
<tr>
<td>Nijiran, K.S.</td>
<td>179–184</td>
</tr>
<tr>
<td>Ninnis, R.</td>
<td>681–686</td>
</tr>
<tr>
<td>Noble, M.I.M.</td>
<td>307–310</td>
</tr>
<tr>
<td>Noble, T.</td>
<td>269–275</td>
</tr>
<tr>
<td>Nolte, L.A.</td>
<td>301–306</td>
</tr>
<tr>
<td>Norman, R.I.</td>
<td>307–310</td>
</tr>
<tr>
<td>N'O'Brien, P.M.S.</td>
<td>311–318</td>
</tr>
<tr>
<td>Ogata, N.</td>
<td>203–210</td>
</tr>
<tr>
<td>Oh, V.M.S.</td>
<td>695–700</td>
</tr>
<tr>
<td>Omata, M.</td>
<td>413–419</td>
</tr>
<tr>
<td>Ninnis, R.</td>
<td>681–686</td>
</tr>
<tr>
<td>Noble, M.I.M.</td>
<td>307–310</td>
</tr>
<tr>
<td>Noble, T.</td>
<td>269–275</td>
</tr>
<tr>
<td>Nolte, L.A.</td>
<td>301–306</td>
</tr>
<tr>
<td>Norman, R.I.</td>
<td>307–310</td>
</tr>
<tr>
<td>O'Brien, P.M.S.</td>
<td>311–318</td>
</tr>
<tr>
<td>Ogata, N.</td>
<td>203–210</td>
</tr>
<tr>
<td>Oh, V.M.S.</td>
<td>695–700</td>
</tr>
<tr>
<td>Omata, M.</td>
<td>413–419</td>
</tr>
<tr>
<td>Ninnis, R.</td>
<td>681–686</td>
</tr>
<tr>
<td>Noble, M.I.M.</td>
<td>307–310</td>
</tr>
<tr>
<td>Noble, T.</td>
<td>269–275</td>
</tr>
<tr>
<td>Nolte, L.A.</td>
<td>301–306</td>
</tr>
<tr>
<td>Norman, R.I.</td>
<td>307–310</td>
</tr>
<tr>
<td>(\text{Author Index})</td>
<td></td>
</tr>
<tr>
<td>(\text{Author Index})</td>
<td></td>
</tr>
<tr>
<td>Rennard, S.I.</td>
<td>337–344</td>
</tr>
<tr>
<td>Reynolds, T.M.</td>
<td>243</td>
</tr>
<tr>
<td>Rezzonico, R.</td>
<td>345–350</td>
</tr>
<tr>
<td>Richards, A.M.</td>
<td>3, 18–21</td>
</tr>
<tr>
<td>Richardson, P.J.</td>
<td>263–268</td>
</tr>
<tr>
<td>Risvanis, J.</td>
<td>671–674</td>
</tr>
<tr>
<td>Ritter, J.M.</td>
<td>111–117</td>
</tr>
<tr>
<td>Robbins, R.</td>
<td>337–344</td>
</tr>
<tr>
<td>Roberts, N.B.</td>
<td>47–50</td>
</tr>
<tr>
<td>Rolfe, P.</td>
<td>359–364</td>
</tr>
<tr>
<td>Rousselet, M.</td>
<td>293–299</td>
</tr>
<tr>
<td>Ruban, E.</td>
<td>359–364</td>
</tr>
<tr>
<td>Rueckert, P.A.</td>
<td>643–649</td>
</tr>
<tr>
<td>Russell, G.I.</td>
<td>359–364</td>
</tr>
<tr>
<td>Russell, R.I.</td>
<td>727–732</td>
</tr>
<tr>
<td>Rutherford, O.M.</td>
<td>67–71</td>
</tr>
<tr>
<td>Ryge, C.</td>
<td>543–550</td>
</tr>
<tr>
<td>Sacra, P.</td>
<td>47–50</td>
</tr>
<tr>
<td>Sahlin, K.</td>
<td>687–693</td>
</tr>
<tr>
<td>Sakurai, M.</td>
<td>581–585</td>
</tr>
<tr>
<td>Salter, A.M.</td>
<td>373–374</td>
</tr>
<tr>
<td>Samani, N.J.</td>
<td>635–641, 665–670</td>
</tr>
<tr>
<td>Sandström, B.</td>
<td>375–392</td>
</tr>
<tr>
<td>Saxerholt, H.</td>
<td>285–292</td>
</tr>
<tr>
<td>Schaad, N.C.</td>
<td>607–610</td>
</tr>
<tr>
<td>Schalekamp, M.A.D.H.</td>
<td>657–679</td>
</tr>
<tr>
<td>Schaper, N.C.</td>
<td>421–426</td>
</tr>
<tr>
<td>Schiffrin, E.L.</td>
<td>277–283, 611–622</td>
</tr>
<tr>
<td>Schoenfeld, N.</td>
<td>365–369</td>
</tr>
<tr>
<td>Schott, J.</td>
<td>67–71</td>
</tr>
<tr>
<td>Schulz, P.-E.</td>
<td>607–610</td>
</tr>
<tr>
<td>Schwarting, K.</td>
<td>39–45</td>
</tr>
<tr>
<td>Scirocco, M.C.</td>
<td>331–336</td>
</tr>
<tr>
<td>Scott, J.M.</td>
<td>73–79, 471–477</td>
</tr>
<tr>
<td>Seed, W.A.</td>
<td>179–184</td>
</tr>
<tr>
<td>Sekino, N.</td>
<td>203–210</td>
</tr>
<tr>
<td>Sériès, F.</td>
<td>707–712</td>
</tr>
<tr>
<td>Shibahara, S.</td>
<td>581–585</td>
</tr>
<tr>
<td>Shoji, S.</td>
<td>337–344</td>
</tr>
<tr>
<td>Simonsen, L.</td>
<td>543–550</td>
</tr>
<tr>
<td>Skottner, A.</td>
<td>285–292</td>
</tr>
<tr>
<td>Sleight, P.</td>
<td>103–109, 733</td>
</tr>
<tr>
<td>Slutzker, L.</td>
<td>563–570</td>
</tr>
<tr>
<td>Sönksen, P.H.</td>
<td>225–233</td>
</tr>
<tr>
<td>Stauss, H.M.</td>
<td>1–2</td>
</tr>
<tr>
<td>Stender, S.</td>
<td>375–392</td>
</tr>
<tr>
<td>Struthers, A.D.</td>
<td>81–86</td>
</tr>
<tr>
<td>Sturniolo, G.S.</td>
<td>727–732</td>
</tr>
<tr>
<td>Subhan, M.M.F.</td>
<td>447–452</td>
</tr>
<tr>
<td>Suzuki, E.</td>
<td>413–419</td>
</tr>
<tr>
<td>Suzuki, H.</td>
<td>581–585</td>
</tr>
<tr>
<td>Suzuki, Y.</td>
<td>413–419</td>
</tr>
<tr>
<td>Sztern, M.</td>
<td>365–369</td>
</tr>
<tr>
<td>Tachibana, Y.</td>
<td>203–210</td>
</tr>
<tr>
<td>Takahashi, K.</td>
<td>581–585</td>
</tr>
<tr>
<td>Takahashi, T.</td>
<td>29–37</td>
</tr>
<tr>
<td>Tappia, P.S.</td>
<td>485–489</td>
</tr>
<tr>
<td>Tavazzi, L.</td>
<td>103–109, 733</td>
</tr>
<tr>
<td>Taylor, E.A.</td>
<td>695–700</td>
</tr>
<tr>
<td>Taylor, P.D.</td>
<td>245–255, 519–524</td>
</tr>
<tr>
<td>Taylor, W.H.</td>
<td>47–50</td>
</tr>
<tr>
<td>Ten Cate, H.</td>
<td>587–594</td>
</tr>
<tr>
<td>Ten Cate, J.W.</td>
<td>587–594</td>
</tr>
<tr>
<td>Theodorsson, E.</td>
<td>165–172</td>
</tr>
<tr>
<td>Thomas, S.H.L.</td>
<td>447–452</td>
</tr>
<tr>
<td>Thomson, N.C.</td>
<td>433–437</td>
</tr>
<tr>
<td>Thorniley, M.S.</td>
<td>359–364</td>
</tr>
<tr>
<td>Tomino, Y.</td>
<td>29–37</td>
</tr>
<tr>
<td>Tooko, J.E.</td>
<td>501–508</td>
</tr>
<tr>
<td>Touyz, R.M.</td>
<td>277–283</td>
</tr>
<tr>
<td>Travis, S.P.L.</td>
<td>51–57</td>
</tr>
<tr>
<td>Tripenbach, T.</td>
<td>345–350</td>
</tr>
<tr>
<td>Troughton, K.L.</td>
<td>485–489</td>
</tr>
<tr>
<td>Tsigos, C.</td>
<td>533–542</td>
</tr>
<tr>
<td>Tzai, T.-S.</td>
<td>701–706</td>
</tr>
<tr>
<td>Uempley, M.</td>
<td>225–233</td>
</tr>
<tr>
<td>Vallin, H.</td>
<td>165–172</td>
</tr>
<tr>
<td>Van den Meiracker, A.H.</td>
<td>675–679</td>
</tr>
<tr>
<td>Van der Poll, T.</td>
<td>587–594</td>
</tr>
<tr>
<td>Van der Schaaf, M.R.</td>
<td>719–725</td>
</tr>
<tr>
<td>Van Tol, A.</td>
<td>719–725</td>
</tr>
<tr>
<td>Vaughan, D.L.</td>
<td>359–364</td>
</tr>
<tr>
<td>Vial, Y.</td>
<td>607–610</td>
</tr>
<tr>
<td>Villain, E.</td>
<td>95–102</td>
</tr>
<tr>
<td>Villena-Cabrera, N.</td>
<td>345–350</td>
</tr>
<tr>
<td>Von Essen, S.</td>
<td>337–344</td>
</tr>
<tr>
<td>Waebler, B.</td>
<td>607–610</td>
</tr>
<tr>
<td>Walker, B.E.</td>
<td>131–133</td>
</tr>
<tr>
<td>Wallberg-Henriksson, H.</td>
<td>301–306</td>
</tr>
<tr>
<td>Walls, J.</td>
<td>405–412</td>
</tr>
<tr>
<td>Wang, L.</td>
<td>557–562</td>
</tr>
<tr>
<td>Watkins, Y.</td>
<td>67–71</td>
</tr>
<tr>
<td>Watt, G.C.M.</td>
<td>665–670</td>
</tr>
<tr>
<td>Watts, G.F.</td>
<td>225–233</td>
</tr>
<tr>
<td>Webb, G.D.</td>
<td>695–700</td>
</tr>
<tr>
<td>Webster, N.R.</td>
<td>131–133</td>
</tr>
<tr>
<td>Weir, D.G.</td>
<td>73–79, 471–477</td>
</tr>
<tr>
<td>Weise, F.</td>
<td>87–93</td>
</tr>
</tbody>
</table>
Absorption
 jejunum, polyunsaturated fat 219–224
Acetaldehyde adducts
 immunoblotting, alcoholic heart muscle disease 263–268
Acetylcholine
 resistance artery, diabetes 519–524
Acute gastric erosions
 cat, human pepsins 47–50
Acute myocardial ischaemia
 natriuretic peptides, exercise 551–556
Acute renal failure
 bile duct ligation, glomerular thromboxane A\textsubscript{2} synthesis 39–45
\textit{S}-Adenosylcysteine
 brain, vitamin B\textsubscript{12} 471–477
\textit{S}-Adenosylhomocysteine
 methylation ratio, brain 73–79
\textit{S}-Adenosylmethionine
 brain, vitamin B\textsubscript{12} 471–477
 methylation ratio, brain 73–79
Adrenal glands
 metadrenaline 533–542
Adrenalectomy
 metadrenaline 533–542
Adrenaline
 bronchoconstriction 439–446
 platelet aggregation, cardiopulmonary bypass 269–275
\(\alpha\textsubscript{2}\)-Adrenoceptors
 vascular reactivity, diabetic nephropathy 421–426
\(\beta\)-Adrenoceptors
 G-protein \(\alpha\)- and \(\beta\)-subunits, atrium 571–580
 Adrenocorticotropic hormone regulation of secretion 4–7
Ageing
 Kupffer cells, endotoxin 211–217
\(\beta\)-Agonists
 angiotensin-converting enzyme 433–437
 ‘New Zealand asthma mortality epidemic’ 14–17
Airway epithelial cells
 neutrophil chemotaxis, cigarette smoke 377–344
Airways resistance
 capsaicin, fenspiride 325–330
Alanine
 catabolism, growth factors 285–292
Albumin
 glomerular filtration rate, diabetes 413–419
 Albumin synthesis feeding, stable isotopes 235–242
Albuninuria
 blood pressure, elderly 185–190
Alcoholic heart muscle disease
 acetaldehyde adducts, immunoblotting 263–268
Alkali-soluble protein
 skeletal muscle, weight loss 479–484
Allopurinol
 ischaemia, kidney 359–364
Amiloride
 platelet aggregation, endothelin 277–283
Amino acid requirements
 protein turnover 597–606*
Subject Index

Amino acids
 McArdle’s disease 687–693
Amylin
 roles in physiology, pathology and therapeutics 7–12
Anaplerosis
 McArdle’s disease 687–693
Angina pectoris
 natriuretic peptides, exercise 551–556
Angiotensin
 \(\beta_2 \)-agonists 433–437
 DNA and RNA synthesis, fibroblasts 557–562
 lithium, tubular reabsorption 351–358
Angiotensin-converting enzyme
 \(\beta_2 \)-agonists 433–437
1,5-Anhydroglucitol
 total parenteral nutrition, renal tubular function 203–210
Anti-inflammator y drugs
 \(\alpha_1 \)-antitrypsin, neutrophils 331–336
Antibodies
 acetaldehyde adducts, alcoholic heart muscle disease 263–268
Antidiuretic hormone
 hepatocytes, diabetes 671–674
 urine concentration, parathyroid hormone 197–201
Antioxidant defences
 cigarette smoking 485–489
\(\alpha_1 \)-Antitrypsin
 neutrophils, sulphonamides 331–336
Apolipoprotein B-100
 renal tract, betaines 25–27
Asthma
 ‘New Zealand mortality epidemic’, \(\beta \)-agonists 14–17
 sympathetic nervous system 439–446
Atherosclerosis
 microalbuminuria, transvascular albumin leakage 629–633
 vascular permeability factor, endothelium 141–147
Atrial natriuretic peptide
 angina pectoris, exercise 551–556
 glomerular filtration rate, diabetes 413–419
 haemodynamics, cardiac pacing 165–172
 renin–angiotensin system 81–86
 studies in New Zealand 18–21
Atrium
 G-protein \(\alpha \)- and \(\beta \)-subunits, \(\beta \)-adrenoceptor blockade 571–580
Autonomic nervous system
 heart rate variability, spectral analysis 103–109
 heart transplantation, spectral analysis 95–102
 microcirculation, heart failure 501–508*
Bacteria
 renal tract, betaines 25–27
Baroreflex sensitivity
 heart rate variability, spectral analysis 103–109
 power spectral analysis, heart rate 1–2
 statistical dependence 651–655
Betaines
 bacteria, renal tract 25–27
Bile duct ligation
 glomerular thromboxane \(A_2 \) synthesis, acute renal failure 39–45
Blood flow
 venous occlusion plethysmography 643–649
Blood pressure
 albuminuria, elderly 185–190
 endothelin 509–517
 head-down tilt, spectral analysis 87–93
 heart transplantation, spectral analysis 95–102
 insulin resistance, dietary fructose 719–725
 kidney, genetics 665–670
 power spectral analysis, autonomic nervous system 1–2
 proteinuria, thromboxane receptor antagonists 623–627
 resistance arteries, endothelium 611–622
Blood volume
 carotid baroreceptors, orthostatic hypotension 463–470
Body composition
 dual-energy X-ray absorptiometry 319–324
Bone density
 research in Auckland 12–14
Bradykinin
 resistance artery, diabetes 519–524
Brain
 hypomethylation, vitamin \(B_{12} \) 471–477
 methyltransferases, vitamin \(B_{12} \) 73–79
Brain natriuretic peptide
 angina pectoris, exercise 551–556
 left ventricular filling, Doppler echocardiography 159–164
 renin–angiotensin system 81–86
 studies in New Zealand 18–21
Breathing pattern
 altitude, newborn infants 345–350
Breathlessness
 morphine inhalation, exercise 447–452
5-Bromodeoxyuridine
 cell cycle, cell proliferation 119–130*
Bronchoconstriction
 sympathetic nervous system 439–446
Subject Index

n-Butyrate
 gangliosides, colonic cancer 491–499

Calcium
 endothelin, protein kinase C 277–283
 parathyroid hormone, urine concentration 197–201
Calcium absorption
 intestine, stable strontrium 243–244
Calcium pump
 membrane fluidity, hyperlipidaemia 307–310
Calphostin C
 platelet aggregation, endothelin 277–283
Cancer
 alkali-soluble protein, skeletal muscle 479–484
 colon, gangliosides 491–499
Capillary
 haemodynamics, heart failure 501–508*
Capsaicin
 airways resistance, fenspiride 325–330
Carbohydrate metabolism
 regulation, amylin 7–12
Cardiac pacing
 haemodynamics, atrial natriuretic peptide 165–172
Cardiomyopathy
 acetaldehyde adducts, immunoblotting 263–268
Cardiopulmonary bypass
 platelet aggregation, adrenaline 269–275
Cardiopulmonary receptors
 head-down tilt, spectral analysis 87–93
Carotid baroreceptors
 plasma volume, orthostatic hypotension 463–470
Catabolism
 total parenteral nutrition, growth factors 285–292
Catechol-o-methyltransferase
 metadrenaline 533–542
Cell cycle
 assessment of cell proliferation 119–130*
Cell lineage
 myocytes, retrovirus 257–262
Cell proliferation
 methods of assessment 119–130*
Chemokines
 infection 393–400
Cholesterol esterification
 pregnancy 311–318
Cholinesterase
 nitric oxide, endothelium 111–117
Chronic obstructive pulmonary disease
 fenspiride 325–330
 motor control, tracking task 453–461
Cigarette smoking
 cytokines, antioxidant defences 485–489
 neutrophil chemotaxis, airway epithelial cells 337–344
Cirrhosis
 venous responsiveness, noradrenaline 525–531
Citrate
 McArdle’s disease 687–693
Clinical research
 progress in New Zealand 3–27
Clonidine
 vascular reactivity, diabetic nephropathy 421–426
Collecting tubule
 rubidium uptake, insulin resistance 293–299
Colon
 ion transport, platelet-activating factor 51–57
Colonic cancer
 gangliosides, n-butyrate 491–499
Confocal microscopy
 gap junctions, confocal microscopy 257–262
Continuous ambulatory peritoneal dialysis
 diabetes, insulin action 427–432
Continuous positive airway pressure
 haemodynamics, congestive heart failure 173–178
 respiratory efforts 707–712
Contractile properties
 skeletal muscle, growth hormone deficiency 67–71
Control of breathing
 altitude, newborn infants 345–350
 tracking task, chronic obstructive pulmonary disease 453–461
Copper stable isotopes
 uroporphyrin, haem arginate 365–369
Corticosteroid
 regulation of secretion 4–7
Cyclic GMP
 glomerular filtration rate, atrial natriuretic peptide 413–419
Cyclo-oxygenase
 endothelium, hypertension 611–622
Cytokines
 cigarette smoking 485–489
 protein synthesis, dietary fats 59–66
 sepsis, plasminogen activator 587–594
Daltroban
 bile duct ligation, acute renal failure 39-45
 proteinuria, blood pressure 623-627
Danish Nutrition Council
 trans fatty acids 375-392
Decompression illness
 cardiorespiratory abnormalities 595-596
Diabetes
 endothelin, resistance artery 519-524
 endothelium 245-255*
 glomerular filtration rate, atrial natriuretic peptide 413-419
 glycosylated haemoglobin, semi-carbazide-sensitive amine oxidase 675-679
 insulin action, continuous ambulatory peritoneal dialysis 427-432
 islet amyloid 7-12
 neuropathy, flow motion 191-196
 vascular reactivity, clonidine 421-426
 vasopressin receptor, hepatocytes 671-674
Dietary fats
 protein synthesis, cytokines 59-66
Dietary fructose
 insulin resistance, blood pressure 719-725
Dihydroxyphenylglycol
 metadrenaline 533-542
Direct analysis
 fat mass, dual-energy X-ray absorptiometry 319-324
Disseminated intravascular coagulation
 vascular smooth muscle, thrombin 149-157
Diurnal cycling
 amino acid requirements 597-606*
DNA
 skeletal muscle, weight loss 479-484
DNA synthesis
 fibroblasts, angiotensin IV 557-562
Doppler echocardiography
 left ventricular filling, brain natriuretic peptide 159-164
Doppler ultrasound
 coronary artery flow, nitrates 635-641
Dual-energy X-ray absorptiometry
 body composition 319-324
Edrophonium
 nitric oxide, endothelium 111-117
Eicosanoids
 endothelium, hypertension 611-622
Elderly
 albuminuria, blood pressure 185-190
Electrolytes
 blood pressure, genetics 665-670
Endothelial cells
 nitric oxide, L-arginine 135-139
Endothelin
 blood pressure 509-517
 focal glomerular sclerosis, low-protein diet 29-37
 hypertension 509-517
 platelet aggregation, protein kinase C 277-283
Endothelin receptors
 focal glomerular sclerosis, low-protein diet 29-37
Endothelium
 cholinesterase, nitric oxide 111-117
 insulin-dependent diabetes mellitus 245-255*
 microcirculation, heart failure 501-508*
 resistance arteries, hypertension 611-622
 resistance artery, diabetes 519-524
 vascular permeability factor, atherosclerosis 141-147
Endothelium-derived relaxing factor
 pregnancy 607-610
 resistance arteries, hypertension 611-622
Endotoxin
 cytokines, dietary fats 59-66
 Kupffer cells, ageing 211-217
Energy expenditure
 glucose-induced thermogenesis 543-550
Epidermal growth factor
 mucosal healing 401-403
Erythrocytes
 membrane function, hyperlipidaemia 307-310
 metabolic acidosis, inorganic phosphate 405-412
Exercise
 breathlessness, morphine inhalation 447-452
 coronary artery flow, Doppler ultrasound 635-641
 natriuretic peptides, angina pectoris 551-556
Family studies
 kidney, hypertension 665-670
Fat mass
 dual-energy X-ray absorptiometry, direct analysis 319-324
Feeding
 albumin synthesis, stable isotopes 235-242
Fenspiride
 airway resistance, capsaicin 325-330
Ferritin
 urological disease 701-706
Fetus
 lipoprotein metabolism 311-318
Fibrinolysis
 sepsis, plasminogen activator 587-594
Flow cytometry
 assessment of cell proliferation 119-130*
Flow motion
neuropathy, diabetes 191-196
Focal glomerular sclerosis
endothelin, low-protein diet 29–37
Folate
methytransferases, brain 73-79
Free fatty acids
kinetics, insulin 681-686
Fructose
insulin resistance, blood pressure 719-725
Furosemide
renin secretion, nitric oxide 657–663
Fumarate
McArdle’s disease 687–693
Gangliosides
colon cancer, n-butyrate 491-499
Gap junctions
connexin, confocal microscopy 257–262
Gas chromatography–mass spectrometry
very-low-density lipoprotein apolipoprotein
B-100, density 225–233
Gaeric erosions
cat, human pepsins 47–50
Gastrointestinal ulceration
intestinal trefoil factor, epidermal growth
factor 401–403
Genetics
blood pressure, kidney 665–670
Glomerular filtration rate
atrial natriuretic peptide, diabetes 413–419
parathyroid hormone, urine
concentration 197–201
Glomerular thromboxane A₂ synthesis
bile duct ligation, acute renal failure 39–45
Glucose
atrial natriuretic peptide, glomerular filtration
rate 413–419
thermogenesis, splanchnic and leg
tissue 543–550
Glucose intolerance
glucose transport, skeletal muscle 301–306
Glucose metabolism
insulin action, continuous ambulatory peritoneal
dialysis 427–432
Glucose transport
skeletal muscle, glucose intolerance 301–306
Glycerol
insulin 681–686
Glycogenolysis
McArdle’s disease 687–693
Glycolysis
inorganic phosphate, metabolic
acidosis 405–412
Glycosylated haemoglobin
diabetes, semi-carbazide-sensitive amine
oxidase 675–679
Goto–Kakizaki rat
 glucose transport, skeletal muscle 301–306
G-protein
α- and β-subunits, atrium 571–580
Growth hormone
alanine, catabolism 285–292
Growth hormone deficiency
skeletal muscle, contractile properties 67–71
GTPase-activating protein
neurofibrin, neurofibromatosis 581–585
Haem arginate
uproporphyrin, coproporphyrin 365–369
Haemodynamics
cardiac pacing, atrial natriuretic
peptide 165–172
continuous positive airway pressure, congestive
heart failure 173–178
head-down tilt, spectral analysis 87–93
microcirculation, heart failure 501–508*
Haemostasis
cardiopulmonary bypass, adrenaline 269–275
Head-down tilt
haemodynamics, spectral analysis 87–93
Heart
gap junctions, connexin 257–262
Heart failure
heart rate variability, spectral analysis 103–109
metadrenaline 533–542
microcirculation, haemodynamics 501–508*
Heart rate
head-down tilt, spectral analysis 87–93
heart transplantation, spectral analysis 95–102
power spectral analysis, autonomic nervous
system 1–2
Heart rate variability
spectral analysis, baroreflex sensitivity 103–109
Heart transplantation
blood pressure, spectral analysis 95–102
Heat shock protein
infection 393–400
Heparin
vascular smooth muscle, thrombin 149–157
Hepatocytes
vasopressin receptor, diabetes 671–674
Hering–Breuer reflexes
altitude, newborn infants 345–350
Hirudin
platelet aggregation, adrenaline 269–275
vascular smooth muscle, thrombin 149–157
Human pepsins
acute gastric erosions, cat 47–50
Hyperaldosteronism
hypothesis, hereditary 563–570
Hyperalimentation
1,5-anhydroglucitol, renal tubular function 203–210
Hyperlipidaemia
calcium pump, membrane fluidity 307–310
Hyperphosphataemia
metabolic acidosis, uraemia 405–412
Hypertension
calcium pump, membrane fluidity 307–310
metabolic acidosis, uraemia 405–412
albuminuria, elderly 185–190
hereditary, hyperaldosteronism 563–570
kidney, genetics 665–670
metadrenaline 533–542
resistance arteries, endothelium 611–622
rubidium uptake, nephron 293–299
Hypomethylation
brain, vitamin B12 73–79, 471–477
Hypoxia
vagal reflexes, newborn infants 345–350
Idiopathic pulmonary fibrosis
superoxide dismutase 371
Infarct artery patency
thrombolytic therapy 21–24
Infection
chemokines 393–400
Inflammation
urinary ferritin 701–706
Inflammatory bowel disease
platelet-activating factor, synthesis de novo 713–717
Inhalation
morphine, breathlessness 447–452
Inorganic phosphate
metabolic acidosis, uraemia 405–412
Insulin
free fatty acids, kinetics 681–686
Insulin action
diabetes, continuous ambulatory peritoneal dialysis 427–432
Insulin resistance
blood pressure, dietary fructose 719–725
glucose transport, skeletal muscle 301–306
obesity and hypertension, amylin 7–12
rubidium uptake, nephron 293–299
very-low-density lipoprotein apolipoprotein B-100, obesity 225–233
Insulin sensitivity
insulin action, continuous ambulatory peritoneal dialysis 427–432
Insulin-like growth factor-I
alanine, catabolism 285–292
free fatty acids, kinetics 681–686
muscle strength, growth hormone deficiency 67–71
Interleukin-1
Kupffer cells, endotoxin 211–217
Interleukin-6
cigarette smoking 485–489
fibrinolysis, sepsis 587–594
Kupffer cells, endotoxin 211–217
Interleukin-8
infection 393–400
Internal mammary graft
exercise, nitrates 635–641
Intestinal trefoil factor
mucosal healing 401–403
Intestine
calcium absorption, stable strontium 243–244
Intraperitoneal insulin
metabolic effects, continuous ambulatory peritoneal dialysis 427–432
I on transport
platelet-activating factor, distal colon 51–57
Ischaemia
kidney, allopurinol 359–364
Jejunum
absorption, polyunsaturated fat 219–224
Ki-67
cell cycle, cell proliferation 119–130*
Kidney
blood pressure, genetics 665–670
ischaemia, allopurinol 359–364
81mKr ventilation-perfusion inequality 179–184
Kupffer cells
endotoxin, ageing 211–217
Laser Doppler flowmetry
neuropathy, diabetes 191–196
Lean mass
dual-energy X-ray absorptiometry, direct analysis 319–324
Left ventricular filling
Doppler echocardiography, brain natriuretic peptide 159–164
Leucocytes
sodium–potassium-dependent adenosine triphosphatase, potassium 695–700
Leukotrienes
Kupffer cells, endotoxin 211–217
Lipoproteins
pregnancy 311–318
Lithium
tubular reabsorption, angiotensin II 351–358
Low-protein diet
 endothelin gene expression, focal glomerular
 sclerosis 29–37
Lymphocytes
 sodium–potassium-dependent adenosine
 triphosphatase, potassium 695–700

Macula densa
 renin secretion, nitric oxide 657–663
Malaria
 chemokines 393–400
Malate
 McArdle's disease 687–693
Membrane cholesterol
 erythrocytes, hyperlipidaemia 307–310
Membrane fluidity
 calcium pump, hyperlipidaemia 307–310
Messenger RNA
 vasopressin receptor, diabetes 671–674
Metabolic acidosis
 inorganic phosphate, uraemia 405–412
Metadrenaline
 sympathetic nervous system 533–542
Methacholine
 nitric oxide, endothelium 111–117
Methionine synthase
 methylation ratio, brain 73–79
Methylation ratio
 brain, vitamin B12 471–477
 methyltransferases, brain 73–79
Methyltransferases
 vitamin B12, brain 73–79
Mevalonic acid
 very-low-density lipoprotein apolipoprotein
 B-100, obesity 225–233
Microalbuminuria
 diabetes, vascular reactivity 421–426
 transvascular albumin leakage 629–633
Microcirculation
 haemodynamics, heart failure 501–508*
Monoamine oxidase
 metadrenaline 533–542
Monocyte chemotactic protein
 infection 393–400
Morphine
 inhalation, breathlessness 447–452
Motor control
 tracking task, chronic obstructive pulmonary
 disease 453–461
Mucosal healing
 intestinal trefoil factor, epidermal growth
 factor 401–403
Muscarinic receptors
 nitric oxide, endothelium 111–117
Muscle contraction
 tricarboxylic acid cycle, McArdle's
 disease 687–693
Muscle strength
 insulin-like growth factor-I, growth hormone
 deficiency 67–71
Myocardial infarction
 thrombolytic therapy, left ventricular
 function 21–24
Myocytes
 connexin, gap junctions 257–262
Natriuretic peptides
 studies in New Zealand 18–21
Near-infrared spectroscopy
 ischaemia, kidney 359–364
Neonatal respiration
 vagal reflexes, altitude 345–350
Nephron
 rubidium uptake, insulin resistance 293–299
Neurofibroma
 neurofibrin, GTPase-activating protein 581–585
Neurofibromatosis
 neurofibrin, GTPase-activating protein 581–585
Neurofibromin
 GTPase-activating protein, neurofibromatosis 581–585
Neuropathy
 diabetes, flow motion 191–196
Neuropeptide Y
 bronchoconstriction 439–446
Neutrophil chemotaxis
 airway epithelial cells, cigarette
 smoking 337–344
Neutrophils
 α1-antitrypsin, sulphonamides 331–336
New Zealand
 progress in clinical research 3–27
 'New Zealand asthma mortality epidemic'
 β-agonists 14–17
Newborn infants
 vagal reflexes, altitude 345–350
Nitrates
 coronary artery flow, Doppler
 ultrasound 635–641
Nitric oxide
 cholinesterase, endothelium 111–117
 endothelial cells, L-arginine 135–139
 endotoxin shock, thrombin 149–157
 insulin-dependent diabetes mellitus 245–255*
 pregnancy 607–610
 renin secretion, macula densa 657–663
 resistance arteries, hypertension 611–622
 resistance artery, diabetes 519–524
 septic shock 131–133
Subject Index

Nitric oxide synthase
endothelial cells, L-arginine 135-139
septic shock 131-133
N[G]-Nitro-L-arginine methyl ester
renin secretion, macula densa 657-663
Nitrogen balance
amino acid requirements 597-606*
Nitrous oxide
methylation ratio, brain 73-79
Noradrenaline
bronchoconstriction 439-446
vascular reactivity, diabetic nephropathy 421-426
venous responsiveness, cirrhosis 525-531
Normetadrenaline
sympathetic nervous system 533-542
Norrie disease
metadrenaline 533-542
Obesity
very-low-density lipoprotein apolipoprotein B-100, insulin resistance 225-233
Oedema
microcirculation, heart failure 501-508*
Orthophosphate
metabolic acidosis, uraemia 405-412
Orthostatic hypotension
carotid baroreceptors, plasma volume 463-470
Osteoporosis
research in Auckland 12-14
Ouabain
sodium-potassium-dependent adenosine triphosphatase, lymphocytes 695-700
Oxidative metabolism
McArdle's disease 687-693
Oxygen uptake
glucose-induced thermogenesis 543-550
Parathyroid hormone
urine concentration, arginine vasopressin 197-201
Patent foramen ovale
decompression illness 595-596
Pepsins
acute gastric erosions, cat 47-50
Permeability
distal colon, platelet-activating factor 51-57
Phaeochromocytoma
metadrenaline 533-542
Phenylephrine
vascular reactivity, diabetic nephropathy 421-426
Plasma volume
carotid baroreceptors, orthostatic hypotension 463-470
Plasminogen activator
fibrinolysis, sepsis 587-594
Plasminogen activator inhibitor 1
fibrinolysis, sepsis 587-594
Platelet aggregation
cardiopulmonary bypass, adrenaline 269-275
endothelin, protein kinase C 277-283
Platelet-activating factor
ion transport, distal colon 51-57
synthesis de novo, inflammatory bowel disease 713-717
Platelet-derived growth factor
endothelium, atherosclerosis 141-147
Polyamine
cell cycle, cell proliferation 119-130*
Polyol
total parenteral nutrition, renal tubular function 203-210
Polyunsaturated fat
ejunal function 219-224
Porphobilinogen deaminase
uroporphyrin, haem arginate 365-369
Postmenopausal osteoporosis
research in Auckland 12-14
Potassium
sodium-potassium-dependent adenosine triphosphatase, lymphocytes 695-700
Potassium channels
endothelium, hypertension 611-622
Power spectral analysis
heart rate, blood pressure 1-2
Pre-ascitic cirrhosis
venous responsiveness, noradrenaline 525-531
Pre-eclampsia
nitric oxide 607-610
Pregnancy
lipoprotein metabolism 311-318
nitric oxide 607-610
Proliferating cell nuclear antigen
cell cycle, cell proliferation 119-130*
Prostaglandins
Kupffer cells, endotoxin 211-217
Protein
hypomethylation, vitamin B_{12} 471-477
Protein kinase C
endothelium, platelet aggregation 277-283
Protein synthesis
cytokines, dietary fats 59-66
Protein turnover
amino acid requirements 596-606*
Proteinuria
blood pressure, thromboxane receptor antagonists 623-627
Proximal convoluted tubule
rubidium uptake, insulin resistance 293-299
Subject Index

Pulmonary artery pressure
fenspiride 325–330

Renal tract
bacteria, betaines 25–27
Renal tubular function
total parenteral nutrition,
1,5-anhydroglucitol 203–210
Renin–angiotensin system
β2-agonists 433–437
natriuretic peptides 81–86
Renin secretion
macula densa, nitric oxide 657–663
Resistance arteries
diabetes, insulin resistance 519–524
euthyroidism, hypertension 611–622
Respiratory efforts
upper airway pressure 707–712
Retrovirus
cell lineage, myocytes 257–262
RNA
skeletal muscle, weight loss 479–484
RNA synthesis
fibroblasts, angiotensin IV 557–562
Rubidium uptake
nephron, insulin resistance 293–299

Secretion
jejunum, polyunsaturated fat 219–224
Semi-carbazide-sensitive amine oxidase
diabetes, glycosylated haemoglobin 675–679
Sepsis
chemokines 393–400
fibrinolysis, plasminogen activator 587–594
nitric oxide synthase 131–133
Serum lipids
insulin action, continuous ambulatory peritoneal dialysis 427–432
Sialic acid
colonic cancer, n-butyrate 491–499
Skeletal muscle
alkali-soluble protein, weight loss 479–484
catabolism, growth factors 285–292
contractile properties, growth hormone
deficiency 67–71
glucose transport, glucose intolerance 301–306
glucose-induced thermogenesis 543–550
Sleep apnoea–hypopnoea
respiratory efforts 707–712
Sodium
nephron, insulin resistance 293–299
venous responsiveness, noradrenaline 525–531
Sodium–potassium-dependent adenosine triphosphatase
nephron, insulin resistance 293–299
potassium, lymphocytes 695–700
Spectral analysis
blood pressure, heart transplantation 95–102
haemodynamics, head-down tilt 87–93
heart rate variability, baroreflex sensitivity 103–109
Splanchnic tissues
glucose-induced thermogenesis 543–550
Stable isotopes
albumin synthesis, feeding 235–242
very-low-density lipoprotein B-100, hepatic secretion 225–233
Statistical dependence
baroreflex sensitivity 651–655
Staurosporine
platelet aggregation, endothelin 277–283
Steroid osteoporosis
research in Auckland 12–14
Strontium
calcium absorption, intestine 243–244
Subacute combined degeneration
hypomethylation, vitamin B12 471–477
Subcutaneous insulin
metabolic effects, continuous ambulatory peritoneal dialysis 427–432
Sulphonamides
α1-antitrypsin, neutrophils 331–336
Superoxide dismutase
idiopathic pulmonary fibrosis 371
Surgery
alkali-soluble protein, skeletal muscle 479–484
Sympathetic nervous system
bronchoconstriction 439–446
metadrenaline 533–542

Tachycardia
cardiac pacing, atrial natriuretic peptide 165–172
99mTc
ventilation–perfusion inequality 179–184
Thermogenesis
glucose, splanchnic and leg tissue 543–550
Thick ascending limb of Henle
rubidium uptake, insulin resistance 293–299
Thrombin
platelet aggregation, endothelin 277–283
vascular smooth muscle, endotoxic shock 149–157
Thrombolytic therapy
left ventricular function, myocardial infarction 21–24
Thromboxane A2
glomerular synthesis, acute renal failure 39–45
Subject Index

Thromboxane A2/prostaglandin H2 receptor antagonism
bile duct ligation, acute renal failure 39-45
Thromboxane receptor antagonists
proteinuria, blood pressure 623-627
Thymidine
cell cycle, cell proliferation 119-130*
Thymidine incorporation
fibroblasts, angiotensin IV 557-562
Tilt
blood pressure, heart transplantation 95-102
Tissue factor
fibrinolysis, sepsis 587-594
Tissue-type plasminogen activator
fibrinolysis, sepsis 587-594
Total enteral nutrition
1,5-anhydroglucitol, renal tubular function 203-210
Total parenteral nutrition
1,5-anhydroglucitol, renal tubular function 203-210
catabolism, growth factors 285-292
Toxoplasmosis
chemokines 393-400
Tracking task
motor control, obstructive pulmonary disease 453-461
trans Fatty acids
influence on health 373-384, 375-392
Transfer function analysis
haemodynamics, head-down tilt 87-93
Transitional cell carcinoma
urinary ferritin 701-706
Transvascular albumin leakage
microalbuminuria, atherosclerosis 629-633
Triacylglycerol
membrane function, hyperlipidaemia 307-310
Tricarboxylic acid cycle
McArdle's disease 687-693
Tuberculosis
chemokines 393-400
Tubular reabsorption
lithium, angiotensin II 351-358
Tumour necrosis factor
cigarette smoking 485-489
fibrinolysis, sepsis 587-594
Kupffer cells, endotoxin 211-217
Tumour-infiltrating lymphocytes
urinary ferritin 701-706

Upper airway pressure
respiratory efforts 707-712
Uraemia
metabolic acidosis, inorganic phosphate 405-412

Uridine incorporation
fibroblasts, angiotensin IV 557-562
Urinary albumin excretion
transvascular albumin leakage, atherosclerosis 629-633
Urine concentration
parathyroid hormone, arginine vasopressin 197-201
Urological disease
ferritin 701-706
Uroporphyrin
coproporphyrin, haem arginate 365-369

Vagal reflexes
altitude, newborn infants 345-350
Variability
blood pressure, heart transplantation 95-102
Vascular conductance
venous occlusion plethysmography 643-649
Vascular permeability factor
endothelium, atherosclerosis 141-147
Vascular reactivity
diabetic nephropathy, clonidine 421-426
Vascular smooth muscle
endotoxic shock 149-157
vascular permeability factor, atherosclerosis 141-147
Vasoconstriction
endothelin, hypertension 509-517
Vasodilatation
resistance artery, diabetes 519-524
venous occlusion plethysmography 643-649
Vasomotion
neuropathy, diabetes 191-196
Vasopressin
haemodynamics, cardiac pacing 165-172
Vasopressin receptor
hepatocytes, diabetes 671-674
Venous occlusion plethysmography
blood flow 643-649
Venous responsiveness
noradrenaline, pre-ascitic cirrhosis 525-531
Ventilation
fenspiride 325-330
Ventilation-perfusion inequality
81mKr, 99mTc 179-184
Very-low-density lipoprotein apolipoprotein B-100
hepatic secretion, obesity 225-233
Vitamin B12
hypomethylation, brain 471-477
methyltransferases, brain 73-79

Weight loss
alkali-soluble protein, skeletal muscle 479-484
Wilson's disease
copper stable isotopes, kinetic studies 727-732
Biosynthesis of platelet-activating factor in normal and inflamed human colon mucosa: evidence for the involvement of the pathway of platelet-activating factor synthesis de novo in inflammatory bowel disease by C. B. Appleyard and K. Hillier 713-717

Long-term fructose versus corn starch feeding in the spontaneously hypertensive rat by M. R. Van der Schaaf, J. A. Joles, A. Van Tol and H. A. Koomans 719-725

CORRECTION

Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? by P. Sleight, M. T. La Rovere, A. Mortara, G. Pinna, R. Maestri, S. Leuzzi, B. Bianchini, L. Tavazzi and L. Bernardi, 733

AUTHOR INDEX

SUBJECT INDEX