Effects of bromocriptine on blood pressure and plasma β-endorphin in spontaneously hypertensive rats

*University of Melbourne, Department of Medicine, Austin Hospital, Heidelberg, Victoria, and Medical Research Centre, Prince Henry's Hospital, Melbourne, Victoria, Australia

Summary

1. Immunoreactive β-endorphin (IR-βEP) was two- to three-fold higher in pituitary neuro-intermediate lobes (N-IL) of spontaneously hypertensive rats (SHR) than of normotensive Wistar-Kyoto (NT-WKY) controls.

2. Plasma levels of IR-βEP were lower in SHR than in NT-WKY rats.

3. Intravenous injections of morphine lowered blood pressure of both SHR and NT-WKY rats to the same level; naloxone restored blood pressure of both groups to pre-morphine values.

4. Infusion of bromocriptine in SHR for 1 week lowered blood pressure and N-IL IR-βEP concentration.

5. These results confirm and extend postulated dopaminergic defect in this model of hypertension.

Key words: bromocriptine, β-endorphin, morphine, pituitary, neuro-intermediate lobe.

Abbreviations: IR-βEP, immunoreactive β-endorphin; N-IL, pituitary neuro-intermediate lobe; NT-WKY, normotensive Wistar-Kyoto; SHR, spontaneously hypertensive rat.

Introduction

The spontaneously hypertensive rat [1] (SHR) has many endocrine abnormalities compared with the normotensive Wistar-Kyoto (NT-WKY) rat including hyperprolactinaemia [2], increased plasma thyrotrophic hormone [3], increased pituitary, plasma and urinary levels of vasopressin [4], increased levels of immunoreactive β-endorphin (IR-βEP) in pituitary neuro-intermediate lobe (N-IL) and decreased plasma levels of IR-βEP [5]. The secretion of these hormones is considered to be under tonic dopaminergic control; studies in vitro have shown that dopamine suppresses the release of vasopressin and neurophysin from the pituitary [6]. The dopaminergic agonist, bromocriptine, produces a rapid, profound fall in blood pressure of SHR [6]; other antihypertensive agents, e.g. captopril, have been shown to reduce the urinary output of vasopressin in SHR [7]. As opioids are hypotensive agents, and β-endorphin release may be impaired in SHR, we compared the effects of morphine and naloxone on blood pressure of SHR and NT-WKY rats, and studied the effects of bromocriptine on blood pressure and tissue β-endorphin levels.

Methods

Female SHR ($n = 9$) and NT-WKY rats ($n = 9$) were anaesthetized with Inactin, which has no depressor effects in rats [8]; in each rat the left jugular vein and carotid artery were cannulated. Pulsatile and mean arterial pressure were recorded continuously on a Grass polygraph with Statham p 23 Db pressure transducers. After 30 min, morphine (2 mg/kg) was injected intravenously, followed 1 h later by naloxone (1 mg/kg); blood pressure was monitored for a further hour.

Two groups of eight female SHR had osmotic minipumps (Alzet model 2002) implanted intraperitoneally under ether anaesthesia. Bromocriptine (22 μg/h) or vehicle was infused for 1 week and blood pressures were measured daily by a tail-cuff method. Animals were killed by
decapitation, trunk blood was collected into heparinized tubes on ice, and plasma frozen until assay. Pituitary glands were dissected into anterior lobe and neuro-intermediate lobe, placed in HCl (0.1 mol/l) on ice, boiled, homogenized, centrifuged and the supernatants appropriately diluted for radioimmunoassay [9]. Statistical analysis was by unpaired t-test and by two-way analysis of variance.

Results

Morphine (2 mg/kg) given intravenously significantly lowered mean blood pressure of SHR (n = 9) from 176 ± 6 to 117 ± 11 mmHg (mean ± SEM) and of NT-WKY rats (n = 9) from 142 ± 3 to 111 ± 5 mmHg (P < 0.005). These falls in blood pressure were 34% of control values for SHR and 22% of control values for NT-WKY rats. Intravenous naloxone (1 mg/kg) restored blood pressure of SHR to 177 ± 4 mmHg and of NT-WKY rats to 149 ± 6 mmHg; these values were not significantly different from those from the two groups during their control, pre-morphine period.

Blood pressures of the bromocriptine-treated group of SHR fell significantly from 153 ± 4 to 118 ± 4 mmHg (F7,49 = 3.8, P < 0.005); blood pressures of the vehicle-treated group of SHR did not change significantly (163 ± 4 to 145 ± 6 mmHg, F7,49 = 1.4, P > 0.05). Bromocriptine-treated SHR had significantly (P < 0.05) lower levels of N-IL IR-PEP than vehicle-treated SHR; no difference in anterior pituitary IR-PEP levels was found between treatments. Though the mean level of plasma IR-PEP in bromocriptine-tested rats was double that of the vehicle-tested group, the difference was not statistically significant (0.1 > P > 0.05) owing to the wide variance in the bromocriptine-treated group.

Discussion

The results presented here show that an exogenous opiate (morphine) lowers blood pressure of SHR more than that of NR-WKY rats both absolutely and relatively, and that this hypotensive action was completely reversed by a modest dose of naloxone. As previously reported [5], differences in immunoreactive β-endorphin levels in the neuro-intermediate lobe and plasma of SHR, compared with NT-WKY rats, are consistent with a role of endogenous opioids in the elevated blood pressure of SHR. The elevated neuro-intermediate lobe content of immunoreactive β-endorphin supports the dopaminergic defect postulated [6] in this model of hypertension. The lack of statistical significance for the increased mean plasma level of β-endorphin in the bromocriptine-treated SHR, compared with the vehicle-treated SHR, warrants further comment. The dose of bromocriptine in this group was low (22 μg/h) because of the low solubility of the drug. Higher doses, accordingly, may provide a more consistent effect on plasma levels of immunoreactive β-endorphin; this possibility is at present being investigated.

The postulated dopaminergic defect in SHR is further supported by observations that hypothalamic dopamine levels are decreased in SHR compared with NT-WKY rats [10]. Abnormalities in prolactin, thyrotrophic hormone, vasopressin, and β-endorphin, together with the hypotensive response to SHR to a dopamine agonist, also seem consistent with a dopaminergic defect. The reports, however, that agents such as vasopressin antiserum [11] will lower blood pressure of SHR to normal raise a conceptual difficulty. If the SHR is defective in tubero-infundibular and tuberohypophyseal dopamine control of the release of several pituitary hormones, it is difficult to understand how correction of only one reduces SHR blood pressure to normal.

Acknowledgments

This study was supported by grants by the Australian National Health and Medical Research Council. Bromocriptine was generously supplied through Sandoz Pharmaceuticals, Australia.
References

Bromocriptine effects in SHR

