Abnormal whole-body and cellular (erythrocytes) turnover of $^{22}\text{Na}^+$ in normotensive relatives of probands with established essential hypertension

N. C. HENNINGSSEN, S. MATTSSON, B. NOSSLIN, D. NELSON AND O. OHLSSON

Medical Departments 1 and 2, Department of Radiation Physics and Department of Nuclear Medicine, University of Lund, Malmö General Hospital, Malmö, Sweden

Summary

1. Whole-body elimination rate of $^{22}\text{Na}^+$ was decreased in normotensive or borderline first-degree relatives of hypertensive probands.
2. Whole-body potassium; exchangeable sodium and urine excretion of sodium, potassium and creatinine were similar in relatives and controls.
3. Erythrocyte net influx of $^{22}\text{Na}^+$ was significantly increased in normotensive relatives.
4. Abnormal whole-body and cellular handling of sodium ($^{22}\text{Na}^+$) demonstrated in relatives indicates that this abnormality may have an important role in the development of essential hypertension in man.

Key words: erythrocyte net influx, normotensive relatives, sodium metabolism.

Introduction

Several studies from different populations (Prior, Evans, Harvey, Davidson & Lindsey, 1968; Dahl, 1972; Dawber, Kannel, Kagan, Donabedian, McNamara & Pearson, 1967) indicate a positive relationship between sodium chloride intake and prevalence of essential hypertension, but studies within single populations have given discrepant results. Rat experiments have indicated a genetic susceptibility to normal or high intakes of sodium chloride in some spontaneously hypertensive strains (Dahl, Heine & Tassinari, 1962). Various mechanism have been proposed (Postnov, Orlov, Gulak & Shevchenko, 1976; Friedman, Nakashima & McIndoe, 1977; Ganguli, Tobian & Iwai, 1979). It has been proposed that there is a genetic susceptibility to NaCl in man that predisposes to hypertension (Fries, 1976).

Dahl, Lax, Young, Schackow & Knudsen (1966) failed to confirm his early findings of an abnormal whole-body turnover of $^{22}\text{Na}^+$ in patients with established essential hypertension, but the genetic background was not studied. There is an increased net influx of $^{22-24}\text{Na}^+$ in erythrocytes of hypertensive patients (Wessels, Junge-Hälling & Losse, 1967) together with increased leucocyte intracellular sodium content and a decreased sodium efflux (Edmondson, Thomas, Hilton, Patrick & Jones, 1975).

In this work we have investigated the whole-body turnover of $^{22}\text{Na}^+$ in first-degree relatives of hypertensive probands as well as the net influx of $^{22}\text{Na}^+$ in erythrocytes.

Material and methods

Subjects

All first-degree relatives in the present study belonged to families with a history of established essential hypertension for at least two generations. Controls were normotensive, age-, sex- and weight-matched individuals without hypertension in their families during two generations.

In study A whole-body turnover of $^{22}\text{Na}^+$ was investigated in 24 first-degree relatives (four females, 20 males) and 15 controls (two females,
13 males). In study B erythrocyte net influx of $^{22}\text{Na}^+$ was studied in 35 first-degree relatives (15 females, 20 males) and 24 controls (10 females, 14 males).

Both methods have been applied on 11 first-degree relatives and 10 controls.

Study A

Whole-body potassium (^{40}K activity) was measured in the low-background iron room. After background scanning with two opposite NaI(Tl)-detectors the individuals were injected with 20–50 kBq of $^{22}\text{Na}^+$ intravenously. Total exchangeable sodium was calculated after 24 h. The subjects maintained their usual diet and were scanned five times for the elimination rate over 8 days (days 0–8). Five urine collections (24 h) were obtained, and also plasma samples for measurements of $^{23}\text{Na}^*$ and $^{23}\text{Na}^+$ were taken. Twelve first-degree relatives and 11 controls continued the study (days 8–15) by adding NaCl (12 g daily) to their dietary sodium intake.

Study B

Blood was drawn into heparinized vessels and studied within 45 min. The packed erythrocytes were washed once with 1 vol. of the incubation solution (Dulbecco & Vogt, 1954) also containing glucose (8.84 mmol/l) human albumin (5.0 g/l) and $^{22}\text{Na}^+$ (37 MBq/l). A portion (2 ml) of the packed erythrocytes was incubated at 37°C with 2 ml of incubation solution. Aliquots were taken after 80 and 140 min and applied on a Sephadex G 50 (fine) column (20 cm long, 1.6 cm diameter; rate 1 ml/min) (Kantura, Kurashina & Nakao, 1974). Tris buffer, 0.15 mol/l with NaCl (153 mmol/l), pH 7.4, was used as effluent. Three erythrocyte fractions from the void were counted for $^{22}\text{Na}^+$ radioactivity in a Nukab Scintillator (350–1550 keV) after measurement of packed cell volume. Intra-assay and intra-individual accuracy was 1–3% (SD).

In study A blood pressure and heart rate were measured by nurses at 13.00–15.00 hours. In study B pressure was measured at 08.00–09.00 hours with an automatic pressure-recording apparatus (Bosomat, Boehringer Ingelheim) each minute for 10 min. Urine collections (24 h) were measured for sodium, potassium and creatinine.

Results

Study A

Whole-body elimination rate (%/day) and the biological half-life ($t_{0.5}$ days) of $^{22}\text{Na}^+$ were significantly ($P < 0.01$) different in first-degree relatives (5.8%/day; $t_{0.5} = 12.7 \pm 3.1$ days) compared with controls (7.3%/day; 9.8 \pm 1.5 days) during period 1 (Fig. 1). During days 8–15

![Fig. 1. Study A: $^{22}\text{Na}^+$ half-life as a function of 24 h urinary sodium excretion: •, first-degree relatives, and ○, controls, on normal diet; ▲, relatives, and △, controls, on normal diet plus 12 g of NaCl/day in tablet form. Mean values for each period are used for daily urinary Na$^+$ excretion.](image-url)
the elimination rate was equal in the two groups (first-degree relatives: 11-0%/day; controls: 11-4%/day).

The mean sodium output (24 h) during period 1 was equal (first-degree relatives: 147 ± 37 mmol; controls: 154 ± 14 mmol).

Whole-body potassium (first-degree relatives: 48.3 ± 7.3; controls: 49.8 ± 6.3 mmol/kg) and total exchangeable sodium (first-degree relatives: 37.3 ± 4.9; controls: 38.6 ± 4.1 mmol/kg), plasma and urine elimination rate of 22Na+, mean age (first-degree relatives: 33 ± 5 years; controls: 32 ± 5) and extrarenal excretion of 22Na+ during period 1 (11 first-degree relatives: 17.2%, 10 controls: 14.8%) were all equal in the two groups.

Blood pressure was significantly higher (P < 0.01) in first-degree relatives (140 ± 14/88 ± 9 mmHg) than in controls (124 ± 10/77 ± 8 mmHg). Heart rate was equal. Seventeen first-degree relatives were normotensive (<135/90 mmHg) and seven were borderline (<150/100 mmHg).

Study B

After 140 min of incubation the net influx of 22Na+ in erythrocytes was significantly increased in both males (P < 0.01) and females (P < 0.05).

Δ(Net influx) was only significantly increased (P < 0.01) in male first-degree relatives (244 ± 46 Bq/ml of erythrocytes) against male controls (191 ± 56 Bq/ml). Net influxes at both 80 and 140 min were significantly (P < 0.01) increased in both male groups compared with corresponding female groups.

Diastolic blood pressure was positively but not significantly correlated (r = 0.37, P < 0.1) to Δ(Net influx) in males.

The mean age was equal in the two groups (31 ± 4 years).

Blood pressures in males (relatives: 124 ± 10/80 ± 8; controls: 121 ± 10/75 ± 10) were equal, but the diastolic pressure in female relatives was significantly higher (P < 0.05) than in controls (relatives: 111 ± 8/78 ± 6; controls: 108 ± 8/71 ± 10). Heart rate was significantly higher (P < 0.05) in female first-degree relatives. Urine volume, sodium, potassium and creatinine excretion were equal in the two groups.

In the 11 first-degree relatives and 10 controls in whom both investigations had been carried out, the whole-body elimination rate was significantly decreased (P < 0.05) and the net influx of 22Na+ significantly increased (P < 0.05) in first-degree relatives.

In both studies there were no significant differences in weight, height and skinfold thickness.

Discussion

The biological half-life of 22Na+ in controls (9.8 ± 1.5 days) is exactly the same as that found by Dahl et al. (1966) under metabolic ward conditions. The exchangeable sodium, whole-body potassium and NaCl intake were also closely similar. Increased intracellular content of sodium or an abnormally slow intracellular exchange of a fraction of the sodium compartment (Garay, Moura, Osborne-Pellegrin, Papadimitriou & Worcel, 1979) could explain the reported findings.

An increase in intracellular sodium, which is only 20–25% of the total exchangeable sodium, would be very difficult to determine with the presently available methods for exchangeable sodium measurement. The increased net influx of 22Na+ in erythrocytes might indicate an abnormally slow intracellular exchange of sodium, which may be explained by an increased sodium content or a slow exchange in a fraction of it. There seem to be a marked difference in cell handling of sodium between the sexes; this has not been reported before. The significantly increased 22Na+ net influx in first-degree relatives indicates that it may play an important role in the development of essential hypertension in man.

Acknowledgments

This work has been supported by the Hulda Almroth’s Foundation, Ernhold Lundström’s Foundation, the Swedish Heart and Lung Disease Association and the University of Lund.

References

