CLINICAL SCIENCE AND MOLECULAR MEDICINE

Guidance for Authors

CONTENTS

1. Policy of the Journal
 1.1. Scope
 1.2. The Editorial Board
 1.3. The editorial process
 1.4. Ethics of investigation on human subjects
 1.5. Originality of papers

2. Submission of Manuscripts: General Information and Format
 2.1. General
 2.2. Full papers
 2.3. Short Communications
 2.4. Correspondence
 2.5. Arrangements for large amounts of information
 2.6. Proof corrections
 2.7. Offprints
 2.8. Availability on MEDLINE

3. Miscellaneous Notes
 3.1. Abbreviations
 3.2. Anatomical nomenclature
 3.3. Animals, plants and micro-organisms
 3.4. Buffers and salts
 3.5. Doses
 3.6. Enzymes
 3.7. Evaluation of measurement procedures
 3.8. Figures and Tables
 3.9. Footnotes
 3.10. Isotope measurements
 3.11. Radionuclide applications in man
 3.12. Methods
 3.13. Nomenclature of disease
 3.15. References
 3.16. Solutions
 3.17. Spectrophotometric data
 3.18. Spelling
 3.19. Statistics
 3.20. Trade names

4. Units: The SI System

5. Abbreviations, Conventions, Definitions, Symbols and Special Comments

1. POLICY OF THE JOURNAL

1.1. Scope

Clinical Science and Molecular Medicine publishes papers in the field of clinical investigation, provided they are of a suitable standard and contribute to the advancement of knowledge in this field. The term 'clinical investigation' is used in its broad sense to include studies in animals and the whole range of biochemical, physiological, immunological and other approaches that may have relevance to disease in man. Studies which are confined to normal subjects, or animals, or are purely methodological in nature may be acceptable. The material presented should permit conclusions to be drawn and should not be only of a preliminary nature. The journal publishes four types of manuscript, namely Invited Editorials, Full Papers, Short Communications and Correspondence. In addition, Clinical Science and Molecular Medicine publishes abstracts of the proceedings of the Medical Research Society and also that Society's Annual Guest Lecture.

1.2. The Editorial Board

The Board comprises equal numbers of Editors for the Medical Research Society and the Biochemical Society and a Chairman and Deputy Chairman who are drawn alternately from the two Societies. Members of the Board retire after a maximum of 5 years; the Chairman serves in his capacity for 2 years. The membership of the Board is designed to cover as wide a range of interests as possible.

The main function of the Board is to decide on the acceptability of submitted papers, but it also deals with general matters of editorial policy. Financial policy is dealt with separately by the Committee of Management.

1.3. The editorial process

A submitted paper is first read by the Chairman of the Editorial Board who then sends it to an Editor. The latter considers the paper in detail and sends it to one or more referees (who remain anonymous) from outside the membership of the Board. The Editor returns it with
his recommendation to the Chairman who then writes formally to the authors. The ultimate responsibility of acceptance for publication lies with the Chairman. If the Chairman is for any reason unavailable, the Deputy Chairman assumes this function.

1.4. Ethics of investigations on human subjects

Authors must state in the text of their paper the manner in which they have complied, where necessary, with the recommendations on human investigations published in the Medical Research Council report of 1962/63 [British Medical Journal (1964) ii, 178–180]. Consent must be obtained from each patient or subject after full explanation of the purpose, nature and risks of all procedures used and the fact that such consent has been given should be recorded in the paper. Papers should also state that the Ethical Committee of the Institution in which the work was performed has given approval to the protocol. The Editorial Board will not accept papers the ethical aspects of which are, in the Board’s opinion, open to doubt.

1.5. Originality of papers

Submission of a paper to the Editorial Board is taken to imply that it reports unpublished work, that it is not under consideration for publication elsewhere and that, if accepted for publication by Clinical Science and Molecular Medicine, it will not be published elsewhere in the same form, either in English or in any other language, without the consent of the Editorial Board. This does not usually apply to previous publication of oral communications in brief abstract form. In such cases authors should enclose copies of the abstracts. When a paper has been accepted for publication the author, or in the case of multiple authorship the author with whom correspondence has taken place, will be asked to sign a statement vesting the copyright in the Editorial Board. Requests for consent for reproduction of material published in Clinical Science and Molecular Medicine should be addressed to the Chairman of the Editorial Board.

2. Submission of Manuscripts: General Information and Format

2.1. General

Papers submitted for publication should be sent to the Chairman of the Editorial Board (Dr D. C. Flenley, Department of Medicine, The Royal Infirmary, Edinburgh EH3 9YW, Scotland).

The submission should contain three copies (of which two may be photocopies) of the typescript, Tables, Figures, etc. The authors should retain one copy of the paper. The Editorial Board does not accept responsibility for damage or loss of papers submitted, although great care is taken to ensure safety and confidentiality of the typescript during the editorial process. In the case of multiple authorship, the covering letter should indicate that the approval of all co-authors has been obtained.

Papers should be presented so that they are intelligible to the non-specialist reader of the journal. This is particularly important in highly specialized fields and a very brief résumé of the current state of knowledge is usually helpful. Certain types of material, e.g. mathematical formulations requiring more than trivial derivations, should be given in a separate Appendix.

Where the reader is referred to previous works by the same author(s) for important details relevant to the present work, it often speeds up assessment if reprints are enclosed with the typescript. This is of particular importance in relation to methodology.

The dates of receipt and acceptance of the paper will be published. If the paper has to be returned to the authors for revision and is not resubmitted within 1 month, the date of receipt will be revised accordingly. For Short Communications the published date will always be that of receipt of the final version. It is emphasized that badly presented or unduly long papers will be returned for revision and delays in publication will be inevitable. Similar delays will be incurred if the typescript is not prepared strictly in accordance with the instructions detailed below.

2.2. Full papers

The authors should refer to a current issue of Clinical Science and Molecular Medicine to make themselves familiar with the general layout. Concise presentation is very important for rising costs are a severe constraint on space. The length of manuscript and the number of Figures and Tables must be kept to a minimum. Extensive Tables of data can be deposited with the Royal Society of Medicine (see 2.5). Guidance for Authors is published in the
January and July issues of the journal, and revised periodically.

Typescripts should be, in general, arranged as follows:

(a) Title page. Title: this should be as informative as possible, since titles of papers are being increasingly used in indexing and coding for information storage and retrieval. The title should indicate the species in which the observations reported have been made. The numbering of parts in a series of papers is not permitted.

List of authors' names (degrees and appointments are not required).

Laboratory or Institute of origin.

Key words: for indexing the subject of the paper; they should, if possible, be selected from the current issues of 'Medical Subject Headings' (MeSH), produced by the Index Medicus.

Short title: for use as a running heading in the printed text; it should not exceed forty-five characters and spaces.

Author for correspondence: the name and address of the author to whom queries and requests for reprints should be sent.

(b) Summary. This should be a brief statement arranged in numbered paragraphs of what was done, what was found and what was concluded and should rarely exceed 250 words. Contributors from non-English speaking countries are invited to include a translation of the summary in their own language. Abbreviations should be avoided as far as possible and must be defined. Statistical and methodological details including exact doses should also be avoided unless they are essential to the understanding of the summary.

(c) Introduction. This should contain a clear statement of the reason for doing the work, but should not include either the findings or the conclusions.

(d) Methods. The aim should be to give sufficient information in the text or by reference to permit the work to be repeated without the need to communicate with the author.

(e) Results. This section should not include material appropriate to the Discussion section.

(f) Discussion. This should not contain results and should be pertinent to the data presented.

(g) Acknowledgments. These should be as brief as possible.

(h) References. See p. vi for the correct format.

(i) Figures and Tables. See p. v.

2.3. Short Communications

The Short Communication should describe completed work, and should not be merely a preliminary communication. The format of Short Communications should be similar to that of Full Papers, but should not exceed 1200 words of text. One Figure or Table is allowed, but if neither is included the text may be expanded to 1400 words. The passage of Short Communications through the editorial process can frequently be expedited and contributors are encouraged to take advantage of these facilities when rapid publication is of importance and the material can be presented concisely. The paper should appear in print within 3 months of acceptance. When submitting Short Communications, authors should make it quite clear that the work is intended to be treated as a Short Communication.

2.4. Correspondence

Letters containing critical assessments of material published in Clinical Science and Molecular Medicine, including Editorials, will be considered for the Correspondence section of the journal. Such letters should be sent to the Chairman of the Editorial Board within 6 months of the appearance of the article concerned. They will be sent to the authors for comment and both the letter and any reply by the author will be published together. Further correspondence arising therefrom will also be considered for publication. Consideration will also be given to publication of letters on ethical matters.

2.5. Arrangements for large amounts of information

It is impracticable to publish very large sets of individual values or very large numbers of diagrams, and under these circumstances a summary of the information only should be included in the paper. The information from which the summary was derived should be submitted with the typescript and, if the latter is accepted, the Editors may ask for a copy of the full information and diagrams to be deposited with the Librarian, the Royal Society of Medicine, 1 Wimpole Street, London W1M 8AE, who will issue copies on request. Experience has shown that such requests are frequently received.
2.6. **Proof corrections**

These are expensive and corrections of other than printers' errors may have to be charged to the author.

2.7. **Offprints**

Twenty-five offprints are supplied free and additional copies may be obtained at terms, based upon the cost of production, that will be given with the proofs. All offprints should be ordered when the proofs are returned.

2.8. **Availability on MEDLINE**

Summaries of papers in *Clinical Science and Molecular Medicine* are available on-line on teleprinters participating in the MEDLINE system run by the National Library of Medicine, National Institutes of Health, Bethesda, Maryland, U.S.A.

3. **MISCELLANEOUS NOTES**

3.1. **Abbreviations**

Abbreviations should be avoided; if used they must be defined at the first mention; new abbreviations should be coined only for unwieldy names which occur frequently. Abbreviations should not appear in the title nor, if possible, in the Summary. A list of accepted abbreviations appears at the end of this document.

3.2. **Anatomical nomenclature**

This should follow the recommendations of the International Anatomical Nomenclature Committee (1966), *Nomina Anatomica*, 3rd edn, Excerpta Medica Foundation, Amsterdam.

3.3. **Animals, plants and micro-organisms**

The full binominal specific names should be given at first mention for all experimental animals other than common laboratory animals. The strain and, if possible, the source of laboratory animals should be stated. Thereafter in the text, single letter abbreviations may be given for the genus; if two genera with the same initial letter are studied, abbreviations such as *Staph.* and *Strep.* should be used.

3.4. **Buffers and salts**

The acidic and basic components should be given, together with the pH. Alternatively, a reference to the composition of the buffer should be given. Further details are provided in the *Biochemical Journal* (1978) **169**, 9.

When describing solutions containing organic anions and their parent acids, the salt designator (e.g. lactate, urate, oxalate) should be used in preference to the name of the acid (lactic, uric, oxalic) unless it is certain that virtually all of the acid is in the undissociated form.

The composition of incubation media should be described, or a reference to the composition should be given.

3.5. **Doses**

Doses of drugs should be expressed in mass terms, e.g. milligrams (mg) or grams (g), and also (in parentheses) in molar terms, e.g. mmol, mol, where this appears to be relevant. Molecular weights of many drugs may be found in *The Merck Index*, 8th edn, Merck and Co. Inc., N.J., U.S.A.

3.6. **Enzymes**

Nomenclature should follow that given in *Enzyme Nomenclature* (1972), Elsevier Publishing Co., Amsterdam, and Enzyme Commission (EC) numbers should be quoted at the first mention. Where an enzyme has a commonly used informal name, this may be employed after the first formal identification. A unit of enzyme activity should preferably be expressed as that amount of material which will catalyse transformation of 1 μmol of the substrate/min under defined conditions, including temperature and pH. Alternatively, or when the natural substrate has not been fully defined, activity should be expressed in terms of units of activity relative to that of a recognized reference preparation, assayed under identical conditions. Activities of enzymes should normally be expressed as units/ml or units/mg of protein.

3.7. **Evaluation of measurement procedures**

When a new measuring procedure has been used, or when an established procedure has been applied in a novel fashion, an estimate of the precision of the procedure should be given. This should, as far as possible, indicate what sources of variation have been included in this estimate, e.g. variation of immediate replication, variation within different times of day, or from day to day etc.

If the precision of measurement varies in proportion to the magnitude of the values obtained, it can best be expressed as the coefficient of variation; otherwise it should be expressed by an estimate of the (constant) standard error of
a single observation, or by estimates at several points within the range of observed values.

When recovery experiments are described the approximate ratio of the amount added to the amount already present and the stage of the procedure at which the addition was made should be stated.

3.8. Figures and Tables

These are expensive to print and their number should be kept to a minimum. Their appropriate position in the paper should be indicated in the margin of the text. References to Figures and Tables should be in Arabic numerals, e.g. Fig. 3, and they should be numbered in order of appearance. In general, the same data should not be presented in both a Figure and a Table; simple histograms recording only a few values can more economically be replaced by a Table.

Figures, with captions attached, should be supplied as original drawings or matt photographs together with photocopies. All Figures should have their number and the authors' names written in pencil on the back; the top of the Figure should be indicated with a pencilled arrow. A horizontal or square layout is preferred to a vertical one. Acceptable symbols for experimental points are ●, △, ■, ○, Δ, ♦. The symbols × or + must be avoided. The same symbols must not be used for two curves where the points might be confused. For scatter diagrams, solid symbols are preferred. When a particular variable appears in more than one Figure, the same symbol should be used for it throughout, if possible.

Curves should not be drawn beyond the experimental points, neither should axes extend appreciably beyond the data. Only essential information that cannot readily be included in the legend should be written within the Figure.

Figures for reproduction as half-tones should be submitted as glossy prints. They are particularly expensive to print and their use should be avoided as far as possible.

Tables should be typed separately from the text. They should have an underlined title followed by any legend.

Captions for the Figures, and titles and legends for the Tables should make them readily understandable without reference to the text. Adequate statistical information, including that on regression lines, should be included in Figure captions where appropriate.

3.9. Footnotes

These should be avoided as far as possible but where they are used in Tables they should be identified by the symbols * † ‡ § ¶, in that order.

3.10. Isotope measurements

Both the manufacturer's type number of the counting equipment and the manufacturer's name should be stated. In gamma counting the size and configuration of the detector should be given (e.g. 7-5 cm diam. x 7-5 cm well-type NaI–Tl crystal) and when relevant the channel settings and efficiency of each channel should be specified. Liquid scintillator and Cerenkov counting methods should include the reagents used for sample preparation, with final composition and volume of the sample/scintillant mixture, the type of vial and the method used to correct for quenching. The error in measurement of radioactivity or specific radioactivity should be given if it is a major component of the total experimental error. This error may be derived from measurements on duplicate samples, or from the contributions made by counting statistics, background, quench corrections, etc.

Although the unit for radioactivity is the becquerel (Bq = 1 d.p.s.), for the time being the curie (Ci) should be continued to be used. The degree of isotopic enrichment of the starting material should be specified as atoms % excess for stable isotopes, or the specific radioactivity (radioactivity/unit weight or radioactivity/mol) for radioactive materials. The manufacturer's code number, name and address should be given.

In mathematical models of tracer kinetics the nomenclature of the Task group on tracer kinetics of the International Commission on Radiological Units (Brownell, G. L., Berman, M. & Robertson, J. S., 1968, International Journal of Applied Radiation and Isotopes, 19, 249-262) should be used if possible.

Alternatively, authors may give a reference to a published standard method.

3.11. Radionuclide applications in man

If new or modified radionuclide applications in man are described, an estimate of the average absorbed radiation dose to the whole body should be given, as well as the dose to individual organs that receive higher doses than this average. Although the SI unit for absorbed dose is the gray (Gy = 1 J/kg = 100 rad), for the time being the rad should be continued to be used (see Recommendations of the International Commission on Radiological Protection, ICRP Publication no. 26,
adopted 17 January 1977; Pergamon, Oxford); the SI unit for effective absorbed radiation dose is the sievert [(1 J absorbed/kg of material)/radiation quality factor = 100 rem] but for the time being the rem will be used.

3.12. Methods
In describing certain techniques, namely centrifugation (when the conditions are critical), chromatography and electrophoresis, authors should follow the recommendations published by the Biochemical Society (currently, Biochemical Journal (1978) 169, 1-27).

3.13. Nomenclature of disease
This should follow the International Classification of Disease (8th revision, World Health Organization, Geneva, 1969) as far as possible.

Care is needed where powers are used in Table headings and in Figures to avoid numbers with an inconvenient number of digits. For example: (i) an entry '2' under the heading 10^3k means that the value of k is 0.002; an entry '2' under the heading 10^{-3k} means that the value of k is 2000. (ii) A concentration 0.00015 mol/l may be expressed as 0.15 under the heading 'concn. (mmol/l)' or as 150 under the heading 'concn. (umol/l)' or as 15 under the heading $10^2 \times$ concn. (mol/l)', but not as 15 under the heading 'concn. (mol/l x 10^{-5})'.

3.15. References
These should be in alphabetical order of first authors. The full title of the paper, the journal and the first and last page numbers should be given, e.g.

When the quotation is from a book, the following format should be used, giving the relevant page or chapter number:

References in the text should follow the style: Clark, Freedman, Campbell & Winn (1969) on the first quotation and, if there are more than two authors, ‘Clark et al. (1969)’ or ‘(Clark et al., 1969)’ in subsequent quotations.

References to ‘personal communications’ and ‘unpublished work’ should appear in the text only and not in the list of references. The name and initials of the source of information should be given. When the reference is to material that has been accepted for publication but has not yet been published, this should be indicated in the list of references by ‘In press’ together with the name of the relevant journal and, if possible, the expected date of publication. If such a citation is of major relevance to the manuscript submitted for publication authors are advised that the editorial process might be expedited by the inclusion of a copy of such work. In the case of quotations from personal communications the authors should state in the covering letter that permission for quotation has been obtained.

3.16. Solutions
Concentrations of solutions should be described where possible in molar terms (mol/l and subunits thereof), stating the molecular particle weight if necessary. Values should not be expressed in terms of normality or equivalents. Mass concentration should be expressed as g/l or subunits thereof, for example mg/l or µg/l. For solutions of salts, molar concentration is always preferred to avoid ambiguity as to whether anhydrous or hydrated compounds are used. Concentrations of aqueous solutions should be given as mol/l or mol/kg (g/l or g/kg if not expressed in molar terms) rather than % (w/v) or % (w/w). It should always be made clear whether concentrations of components in a reaction mixture are final concentrations or the concentrations in solutions added.

3.17. Spectrophotometric data
The term ‘absorbance’ [log(I_0/I)] should be used rather than ‘optical density’ or ‘extinction’. The solvent, if other than water, should be specified. Symbols used are: A, absorbance; a, specific absorption coefficient (litre g⁻¹ cm⁻¹) (alternatively use $A_{1%}^\%$); ε, molar absorption coefficient (numerically equal to the absorbance of a molar solution in a 1 cm light-path) (litre mol⁻¹ cm⁻¹, not cm² mol⁻¹).

3.18. Spelling
Clinical Science and Molecular Medicine uses as standards for spelling the Concise or Shorter Oxford Dictionary of Current English (Clarendon Press, Oxford) and Butterworth's Medical Dictionary (Butterworth, London).
3.19. **Statistics**

Papers are frequently returned for revision (and their publication consequently delayed) because the authors use inappropriate statistical methods. Two common errors are the use of means, standard deviations and standard errors in the description and interpretation of grossly non-normally distributed data and the application of *t*-tests for the significance of difference between means in similar circumstances, or when the variances of the two groups are non-homogeneous. In some circumstances it may be more appropriate to provide a ‘scattergram’ than a statistical summary.

A reference should be given for all methods used to assess the probability of a result being due to chance. The format for expressing mean values and standard deviations or standard errors of the mean is, for example: mean cardiac output 10.4 1/min (SD 1.2; *n* = 11). Degrees of freedom should be indicated where appropriate. Levels of significance are expressed in the form *P* < 0.01.

3.20. **Trade names**

The name and address of the supplier of special apparatus and of biochemicals should be given. In the case of drugs, approved names should always be given with trade names and manufacturers in parentheses.

4. UNITS: THE SI SYSTEM

The recommended Système International (SI) units are used by *Clinical Science and Molecular Medicine*. All papers submitted should use these units except in the case of blood pressure values which should be expressed in mmHg. Airways pressure should be expressed in kPa. Where molecular weight is known, the amount of a chemical or drug should be expressed in mol or in an appropriate sub-unit, e.g. mmol. Energy should be expressed in joules (J).

The basic SI units and their symbols are as follows:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>metre</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>mass</td>
<td>kilogram</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>second</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>electric current</td>
<td>ampere</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>thermodynamic temperature</td>
<td>kelvin</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>luminous intensity</td>
<td>candela</td>
<td>cd</td>
<td></td>
</tr>
<tr>
<td>amounts of substance</td>
<td>mole</td>
<td>mol</td>
<td></td>
</tr>
</tbody>
</table>

The following are examples of derived SI units:

<table>
<thead>
<tr>
<th>Physical quantity Name</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>energy</td>
<td>J</td>
<td>kg m^-1 s^-2</td>
</tr>
<tr>
<td>force</td>
<td>N</td>
<td>kg m s^-2</td>
</tr>
<tr>
<td>power</td>
<td>W</td>
<td>kg m^-2 s^-3</td>
</tr>
<tr>
<td>pressure</td>
<td>Pa</td>
<td>kg m^-1 s^-2</td>
</tr>
<tr>
<td>electric charge</td>
<td>C</td>
<td>A s</td>
</tr>
<tr>
<td>electric potential</td>
<td>V</td>
<td>kg m^-2 s^-2 A^-1</td>
</tr>
<tr>
<td>electric resistance</td>
<td>Ω</td>
<td>kg m^-2 s^-3 A^-2</td>
</tr>
<tr>
<td>electric conductance</td>
<td>S</td>
<td>kg^-1 m^-2 s^-3 A^2</td>
</tr>
<tr>
<td>electric capacitance</td>
<td>F</td>
<td>A^2 s^-1 kg^-1 m^-2</td>
</tr>
<tr>
<td>frequency</td>
<td>Hz</td>
<td>s^-1</td>
</tr>
<tr>
<td>volume</td>
<td>l</td>
<td>10^-3 m^3</td>
</tr>
</tbody>
</table>

The word ‘litre’ has been accepted as a special name for cubic decimetre (1 litre = 1 dm^3).

Both the basic and derived SI units, including the symbols of derived units that have special names, may be preceded by prefixes to indicate multiples and submultiples. The prefixes should be as follows:

<table>
<thead>
<tr>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto</td>
<td>h*</td>
</tr>
<tr>
<td>10^1</td>
<td>deka</td>
<td>da</td>
</tr>
<tr>
<td>10^-1</td>
<td>deci</td>
<td>d*</td>
</tr>
<tr>
<td>10^-2</td>
<td>centi</td>
<td>c*</td>
</tr>
<tr>
<td>10^-3</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^-4</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^-9</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^-12</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^-15</td>
<td>femto</td>
<td>f</td>
</tr>
</tbody>
</table>

* To be avoided where possible (except for cm).

Compound prefixes should not be used, e.g. 10^-9 m should be represented by 1 nm, not 1 μm.

Notes:

(i) Full stops are not used after symbols.

(ii) Minutes (min), hours (h), days and years will continue to be used in addition to the SI unit of time [the second (s)].

(iii) The solidus may be used in a unit as long as it does not have to be employed more than once, e.g. mmol/l is acceptable, but ml/min/kg is not, and should be replaced by ml min^-1 kg^-1.
5. ABBREVIATIONS, CONVENTIONS, DEFINITIONS, SYMBOLS AND SPECIAL COMMENTS

As well as standard symbols and abbreviations that have been accepted by international bodies, and which can be used without definition, this list shows selected abbreviations in the form of groups of capital letters (e.g. ALA, ECF, MCHC) which when used must be defined in the text as indicated on p. iv. The standard abbreviations for amino acids are only for use in Figures and Tables or for peptide sequences.

- absorbance
- acceleration due to gravity
- adenosine 3': 5'-cyclic monophosphate
- adenosine 5'-phosphate
- adenosine 5'-pyrophosphate
- adenosine 5'-triphosphate
- adenosine triphosphatase
- adrenocorticotrophic hormone
- alanine
- alternating current
- alveolar minute ventilation
- alveolar to arterial oxygen tension difference
- amper
- aminolaevulinic acid
- Angstrom (Å)
- antidiuretic hormone
- arginine
- arteriovenous
- asparagine
- aspartic acid
- atmosphere (unit of pressure)
- atomic weight
- blood pressure
- blood urea nitrogen
- blood volume
- body temperature and pressure, saturated
- British Pharmacopoeia calculated
- 'Calorie' (= 1000 cal)
- carbon dioxide output
 (in respiratory physiology)
- cardiac frequency
- cardiac output
- centimetre
- clearance of x
- Coenzyme A and its acyl derivatives
- compare
- complement fractions
- conductance (respiratory physiology)
- correlation coefficient
- counts/min, counts/s
- cubic centimetres
- curie
- cycle/s
- cysteine
- dead-space minute ventilation
- dead-space volume
- degrees. Celsius or centigrade
- deoxy (prefix)
- deoxycorticosterone
- deoxycorticosterone acetate
- deoxyribonucleic acid
- diastase
- diethylaminoethylcellulose
- dialysate
- 1,25-dihydroxycholecalciferol
- dilute
- 2,3-diphosphoglycerate
- direct current
- disintegrations/min
- disintegrations/s
- dissociation constant
- acidic
- basic
- apparent
- minus log of
- doses
- dyne
- elastance
- electrocardiogram
- electromechaplagam
- electromotive force
- electron spin resonance
- equation
- equivalents (amount of a chemical)
- erythrocyte count
- erythrocyte sedimentation rate
- ethanol, ethanolic
- ethylenediaminetetra-acetate
- exchangeable
- exchangeable sodium, potassium etc.
- Expt.; plural, Expts.
- experiment (with reference numeral)
- filtered load of x (renal)
- Figure (with reference numeral)
- filtered load of x (renal)
- F
- F'
- F
c
- G
- G

Guidance for Authors

C: express in 1 kPa
conc.
concent.: may be denoted
H: e.g. plasma HCO₃
O: express in 1 s⁻¹ kPa⁻¹
r: may be used without definition
c.p.m., c.p.s.
use ml
Ci (1 Ci = 3.7 x 10⁶ d.p.s.)
Hz
Cys
e.g. 11 August 1970
V
V
°C
not deoxy
DOC
DOCA
DNA
diffusate preferred; ‘dialysate’ should be clearly defined
DEAE-cellulose
X (= dx/dt)
1.25 (OH)₂ D₃
dil.
2,3-DPG
d.c.
d.p.m.
d.p.s
Kₐ
Kₙ
e.g. Kₙ
pk
avoid Latin designations such as b.d. and t.i.d.
not used: express in newtons
(1 dyne = 10⁻⁹ N)
E; express in Pa m⁻³
ECG
EEG
e.m.f.
e.s.r.
eV (for radiation energies)
eqn.
not used: recalculate in molar terms
express as 10¹² cells/l
ESR
not ethyl alcohol or alcoholic
EDTA
Naₐ, Kₐ, etc., for total exchangeable sodium, potassium etc.
Expt.; plural, Expts.

Γₑ
use absorbance
ECF
ECFV
Fₑ
Fig.; plural Figs.
Fₑ
follicle-stimulating hormone
forced expiratory volume in
1 s
fractional concentration in
dry gas
fractional disappearance rate
frequency of respiration
functional residual capacity
gas–liquid chromatography
gas transfer factor
glomerular filtration rate
glutamic acid
glutamine
glutathione
glycine
gram (me)
gravitational field, unit of
(9-8 m s⁻²)
growth hormone
haematocrit
haemoglobin
half-life
herz (s⁻¹)
histidine
hour
human chorionic
gonadotrophin
human placental lactogen
hydrocortisone
hydrogen ion activity
minus log of
25-hydroxycholecalciferol
hydroxyproline
immunoglobulins
injections routes:
intra-arterial
intramuscular
intraperitoneal
intravenous
subcutaneous
international unit
intracellular fluid
intracellular fluid volume
ionic strength
isoleucine
isotonic
isotopically labelled compounds
joule
kilogram (me)
kilopond

Guidance for Authors

FSH
FEV₁₀⁻¹
F
k (as in A = A₀e⁻kt)
FRF
FRC
GFR
Glu
Gin
GSH (reduced); GSSG
Gly
G
GH; if human, HGH
not allowed; use packed cell
volume (PCV)
Hb; express in g/dl
r₁
Hz
His
h
HCG
HPL
use cortisol
a₁: express in mmol/
1 ml pH
25-(OH)D₃
Hyp
IgA, IgD, IgE, IgG, IgM
use abbreviations only in
Figures
i.a.
i.m.
i.p.
i.v.
s.c.
i.u. (definition and reference
should be given for
uncommon or ambiguous
applications, e.g. enzymes)
ICF
ICFV
I
Ile
not used; specify
composition of fluid, e.g.
NaCl, 150 mmol/l
e.g. [U-¹³C₆]glucose,
[1-¹³C₆]glucose, sodium
[1-¹³C₆]acetate; use ¹³C-
labelled albumin, not
¹³C]albumin, since native
albumin does not contain
iodine
for simple molecules:
¹⁴C]CO₂, ¹H₂O
J
kg
not used; 1 kilopond =
9-8067 N

lactate dehydrogenase
leucine
leucocyte count
lipoproteins (serum)
high density
low density
very low density
lābre
logarithm (base 10)
logarithm (base e)
lysinе
maximum
mean corpuscular
haemoglobin
mean corpuscular
haemoglobin concentration
mean corpuscular volume
median lethal dose
meta-
melting point
methanol, methanolic
methionine
metre
Michaels constant
micromole
micron (10⁻⁶ m)
millequivalent
millilitre
millimetre of mercury
millimolar (concentration)
millimole
minute (60 s)
molar (concentration)
molar absorption coefficient
mole
molecular weight
nicotinamide–adenine
dinucleotide
normal
nicotinamide–adenine
dinucleotide phosphate
normal temperature and
pressure
number (in enumerations)
observed
ohm
ornithine
ortho-
orthophosphate (inorganic)
normal
not indicated
not used; give amount
in mmol
mol
mHg; for blood pressure
only: see p. vii (1 mmHg =
0-133 kPa)
mmol/l; not mm
mmol
mm
min
mmol/kg
mole; not m
m (the absorbance of a
molar solution in a
1 cm light-path)
mol
mol. wt.
NAD if oxidation state
not indicated
NAD⁺ if oxidized
NADH if reduced
NADP if oxidation
state not indicated
NADPH if oxidized
should not be used to denote
the concentration or
osmolarity of a solution
use standard temperature and
pressure (STP)
not used;
Guidance for Authors

osmol (or mosmol/l) (the concentration producing an osmotic pressure equal to that of a molar solution of a perfect solute) \bar{V}_{O_2}; express in ml STP/min

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P_{V,I}\)

P $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{o}_{2}}$ $P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$

PCV p, pp. p_A, p_{A,O_2}, p_{A,CO_2}, p_{C,O_2}, p_{C,CO_2} P_a / %

not used; use light petroleum and give boiling range

Phe express as pmol of angiotensin \(1 \text{ h}^{-1} \text{ ml}^{-1}\) \(P\)

Pro $P_{O,OB}$ express in kPa (except for blood pressures); 1 kPa = 7.5 mmHg

$P_{\text{a}_{2}}$, $P_{\text{a}_{1}}$
AARON, J.E., see Hodgkinson, A. et al.
ABLETT, M., see Reed, J.W. et al.
AGORASTOS, I., FOX, C., HARRY, D.S. & McINTYRE, N. Lecithin—cholesterol acyltransferase and the lipoprotein abnormalities of obstructive jaundice 369–379
ALLEYNE, G.A.O., see Fine, A. et al.
ANGELIN, B., EINARSSON, K. & LEUD, B. Effect of chenodeoxycholic acid on serum and biliary lipids in patients with hyperlipoproteinaemia 451–455
ASTRUP, A.G. Family studies on the activity of uroporphyrinogen I synthase in diagnosis of acute intermittent porphyria 251–256
AZNAR, E., see Kurokawa, K. et al.

BAGGIOLINI, E.G., see Clemens, T.L. et al.
BALL, S.G., see Thomas, T.H. et al.
BARRETT, A.J., see Davies, M. et al.
BASAR, L, see Wiggins, R.C. et al.
BAUEREISS, K., HOFBAUER, K.G., KONRADS, A. & GROSS, F. Effect of saralasin and serum in myohaemoglobinuric acute renal failure of rats 555–560
BAUMANN, J.M., BISAZ, S., FLEISCH, H. & WACKER, M. Biochemical and clinical effects of ethane-1-hydroxy-1,1-diphosphonate in calcium nephrolithiasis 509–516
BELCHER, E.H., see Kojo Addae, S. et al.
BEL, C. & LANG, W.J. Effects of renal dopamine receptor and β-adrenoreceptor blockade on rises in blood angiotensin after haemorrhage, renal ischaemia and frusemide diuresis in the dog 17–23
BENNETT, F.I., see Fine, A. et al.
Bergström, J., FURST, P., NORÉE, L.-O. & VINNARS, E. Intracellular free amino acids in muscle tissue of patients with chronic uraemia: effect of peritoneal dialysis and infusion of essential amino acids 51–60
BERTHEZENE, F., see Vincent, M. et al.
BETTER, O.S., see Ish-Shalom, N. et al. see also Winaver, J. et al.
BILLING, B.H., see Gollan, J.L. et al.
BIRCHER, J., see Scherrer, S. et al.
BISAZ, S., JUNG, A. & FLEISCH, H. Uptake by bone of pyrophosphate, diphosphonates and their technetium derivatives 265–272
BISAZ, S., see also Baumann, J.M. et al.
BLUMGART, L.H., see Allison, M.E.M. et al.
BOATIN, R., see Kojo Addae, S. et al.
BLYTHE, W.B., see Klemmer, P.J. et al.
BOBERG, J., see Vessby, B. et al.
BOHN, B., see Bursaux, E. et al.
Author Index

Boother, F.A., see Snashall, P.D. et al.
Bornet, H., see Vincent, M. et al.
Boucher, R., see Garcia, R. et al.
Boynar, J.W., Jr., see Wen, S.-F. et al.
Brami, M., see Kamoun, K. et al.
Brauman, H., see Nijs-de Wolf, N. et al.
Brooks, B.A. & Lant, A.F. The use of the human erythrocyte as a model for studying the action of diuretics on sodium and chloride transport 679–683
Brown, J.J., see Boddy, K. et al.
Broyer, M., see Bursaux, E. et al.
Broyer, M., see Delaporte, C. et al.
Burki, N. K., see Chaudhary, B.A. et al.

Callender, S.T., see Pippard, M.J. et al.
Cameron, J.S., see Simmonds, H.A. et al.
Care, A.D., see Swaminathan, R. et al.
Cary, B.A., see Scarpello, J.H.B. et al.
Chaimovitz, C., see Ish-Shalom, N. et al.; see also Winaver, J. et al.
Chanard, J., see Kamoun, K. et al.
Chaudhary, B.A. & Burki, N.K. Effects of airway anaesthesia on the ability to detect added inspiratory resistive loads 621–626
Chwalbinska-Moneta, J., see Nazar, K. et al.
Clark, A.S., see Lindsay, R. et al.
Coles, G.A., see Davies, M. et al.; see also Sanders, E. et al.
Cort, J.H., see Cash, J.D. et al.
Corvelazzo, S., see Okolicsanyi, L. et al.
Corvilain, J., see Nijs-de Wolf, N. et al.
Cotes, J.E., see Reed, J.W. et al.
Creamer, B., see Wheeler, P.G. et al.
Csicsmann, J., see Hutchinson, J.S. et al.
Cunningham, V.J. & Heath, D.F. An interpretation of the intravenous glucose tolerance test in the light of recent findings on the kinetics of glucose and insulin in man 161–173

Dakubu, S., see Kojo Addae, S. et al.
Dallinger, K.J.C., see Gollan, J.L. et al.
Davies, D.L., see Boddy, K. et al.
Davies, M., Barrett, A.J., Travis, J., Sanders, E. & Coles, G.A. The degradation of human glomerular basement membrane with purified lysosomal proteases: Evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis 233–240
Davies, M., see also Sanders, E. et al.
DE LOS SANTOS, C., see Klemmer, P.J. et al.
DE NUTTE, N., see Nijs-de Wolf, N. et al.
DEMAYSSIEUX, S., see Garcia, R. et al.
DESCOUBRES, C., see Kurokawa, K. et al.
DIGHE, K.K., SMITH, G.W., UNGAR, A. & WHELPDALE, P.H. Renal prostaglandins in renal hypertensive dogs 561–566
DOBIE, J.W., see Allison, M.E.M. et al.
DONKER, A.J.M., see Van Hoogdalem, P. et al.
DRAY, F. Bartter's syndrome: contrasting patterns of prostaglandin excretion in children and adults 115–118
DUPONT, J., see Vincent, M. et al.
EDWARDS, R.H.T. Editorial Review: Physiological analysis of skeletal muscle weakness and fatigue 463–470
EDWARDS, R.H.T., see also Bigland-Ritchie, B. et al.
EINARSSON, K., see Angelin, B. et al.
ELLIOTT, A., see Boddy, K. et al.
FAHRENKRUG, J., SCHAFFALITZKY DE MUCKADELL, O.B. & HOLST, J.J. Elimination of porcine secretin in pigs 61–68
FERNANDES, M., FIORENTINI, R., ONESTI, G., BELLINI, G., GOULD, A.B., HESSAN, H., KIM, K.E. & SWARTZ, C. Effect of administration of Sar^1-Ala^8-angiotensin II during the development and maintenance of renal hypertension in the rat 633–637
FERGUSON, M.M., see Lindsay, R. et al.
FLEISCH, H., see Baumann, J.M. et al.; see also Bisaz, S. et al.
FIORENTINI, R., see Fernandes, M. et al.
FOX, C., see Agorastos, J. et al.
FRASER, M.M., see Allison, M.E.M. et al.
FRIGON, R.P., see Levy, S.B. et al.
FUNCK-BRENTANO, J.L., see Kamoun, K. et al.
FRÜST, P., see Bergström, J. et al.
GADER, A.M.A., see Cash, J.D. et al.
GARDNER, M.L.G., SAMSON, R.R. & HEADING, R.C. Changes in absorptive and peptide hydrolase activities in rat small intestine after administration of 5-fluorouracil 411–418
GENEST, J., see Garcia, R. et al.
GHIDINI, O., see Okolicsanyi et al.
GOLDEN, B.E., see Patrick, J. et al.
GOLDEN, M.N., see Patrick, J. et al.
GOLDMANN, G.S., see Nolan, J.P. et al.
GOLLAN, J.L., DALLINGER, K.J.C. & BILLING, B.H. Excretion of conjugated bilirubin in the isolated perfused rat kidney 381–389
GOULD, A.B., see Fernandes, M. et al.
Author Index

GRAHAM, R.F., see Clemens, T.L. et al.
GRASSINO, A., see Sorli, J. et al.
GREENWOOD, D.T., see Conway, J. et al.
GRIMBLE, R.F., see Miller, B.G. et al.
GROSS, F., see Bauereiss, K. et al.
GUHA, P., see Pec, B. et al.
GUTKOWSKA, J., see Garcia, R. et al.
HALDIMANN, B., see Scherrer, S. et al.
HALLIDAY, D., see McKERAN, R.O. et al.
HARRY, D.S., see Agorastos, J. et al.
HART, D.M., see Lindsay, R. et al.
HARVEY, I., see Boddy, K. et al.
HAYWOOD, J.K., see Boddy, K. et al.
HEADING, R.C., see Gardner, M.I.G. et al.
HEATH, D.F., see Cunningham, V.J.
HENDY, G.N., see Clemens, T.L. et al.
HESSAN, H., see Fernandes, M. et al.
HODGKINSON, A. Evidence of increased oxalate absorption in patients with calcium-containing renal stones 291–294
HODGKINSON, A., AARON, J.E., HORSMAN, A., MCLACHLAN, M.S.F. & NORDIN, B.E.C. Effect of oophorectomy and calcium deprivation on bone mass in the rat 439–446
HOFBAUER, K.G., see Bauereiss, K. et al.
HOLDSWORTH, C.D., see Smart, R.C.
HOLLOWAY, I., see Boddy, K. et al.
HOLST, J.J., see Fahrenkrug, J. et al.
HOPKIN, I.E., see Milner, A.D. et al.
HORSMAN, A., see Hodgkinson, A. et al.
HOSKING, G.P., see Bigland-Ritchie, B. et al.
HILTON, P.J., see Patrick, J. et al.
HUGHES, J.M.B., see Clark, E.H. et al.
HUTCHINSON, J.S., CSICSMANN, J., KORNER, P.I. & JOHNSTON, C.I. Characterization of immunoreactive angiotensin in canine cerebrospinal fluid as Des-Asp¹-angiotensin II 147–151
IANNOS, J., see Mancia, G. et al.
ILIC, V., see Royle, G. et al.
JAMIESON, G.G., see Mancia, G. et al.
JEAN, G., see Bursaux, E. et al.
JOHNSTON, C.I., see Hutchinson, J.S. et al.
JONES, D.A., see Bigland-Ritchie, B. et al.
JUHLIN-DANNFELT, A., see Jorfeldt, L. et al.
JUNG, A., see Bisaz, S. et al.
KACIUSA-USCILKO, H., see Nazar, K. et al.
KAJI, D.M., see Kahn, T. et al.
KAMOUN, K., CHANARD, J., BRAMI, M. & FUNCK-BRENTANO, J.L. Purine biosynthesis de novo by lymphocytes in gout 595–601
Author Index

KARAMBASIS, Th., see Mountokalakis, Th. et al.
KENNEDY, A.C., see Allison, M.E.M. et al.
KENTERA, D., see Šušić, D. et al.
KETTLEWELL, M.G.W., see Royle, G. et al.
KHAN, M.Y., see Pelc, B. et al.
KILLINGLEY, M., see Chadwick, V.S. et al.
KIM, K.E., see Fernandes, M. et al.
KLEMMER, P.J., DE LOS SANTOS, C. & BLYTHE, W.B. Saline-induced natriuresis in the dog without prior exposure of the kidney to the physical effects of expansion of the extracellular fluid compartment 525–527
KNAPP, M.S., see Pownall, R.
KOJO ADDAE, S., DAKUBU, S., LARMIE, E.T., BOATIN, R. & BELLER, E.H. Total body water, total exchangeable sodium and related variables in the Ghanaian 477–479
KONDO, K., see García, R. et al.
KONRADS, A., see Baureiss, K. et al.
KORN, P.I., see Hutchinson, J.S. et al.
KRAKOFF, L.R., see Kahn, T. et al.
KRASZEWSKI, A., see Lindsay, R. et al.
KÜPFER, A., see Scherrer, S. et al.
KUROKAWA, K., AZNAR, E., DESCOUDRES, C., ZULUETA, A. & MASSRY, S.G. Effects of glucocorticoid deficiency on renal medullary cyclic adenosine monophosphate of rats 573–577
LANG, W.J., see Bell, C.
LANT, A.F., see Brooks, B.A.
LARMIE, E.T., see Kojo Addae, S. et al.
LAYCOCK, J.F., see Shirley, D.G. et al.
LAWRENCE, R.H., see Mancia, G. et al.
LEDERINGHAM, J.G.G., see McGrath, B.P.; see also Warren, D.J.
LEE, M.R., see Thomas, T.H. et al.
LEENEN, F.H.H., see Van Hoogdalem, P. et al.
LEID, B., see Angelin, B. et al.
LEONETTI, G., see Mancia, G. et al.
LEVER, A.F., see Boddy, K. et al.
LEVY, S.B., FRIGON, R.P. & STONE, R.A. The relationship of urinary kallikrein activity to renal salt and water excretion 39–45
LIARD, J.-F. Hypertension induced by prolonged intracoronary administration of dobutamine in conscious dogs 153–160
LIFSCHITZ, M.D. Lack of a role for the renal nerves in renal sodium reabsorption in conscious dogs 567–572
LITHELL, H., see Vessby, B. et al.
LITTLE, R.A., see Elebute, E.A.
LOIRAT, C., see Delaporte, C. et al.
LONDON, G.M., see Chau, N.P. et al.
LORANGE, G., see Sorli, J. et al.
LUDBROOK, J., see Mancia, G. et al.

McKERAN, R.O., HALLIDAY, D. & PURKISS, P. Comparison of human myofibrillar protein catabolic rate from 3-methylhistidine excretion with synthetic rate from muscle biopsied during L-[α-15N]lysine infusion 471–475
MCLACHLAN, M.S.F., see Hodgkinson, A. et al.
Author Index

MACPHERSON, J.N. & TOTHILL, P. Bone blood flow and age in the rat 111-113
MACHADO, E.A., see Sušić, D. et al.
MACHALLA, J., see Nazar, K. et al.
MCINTYRE, see Agorastos, J. et al.
MAHMOUD, A.A.F. & WOODRUFF, A.W. The causation of splenomegaly in schistosomiasis in mice 397-401
MANCIA, G., IANNOS, J., JAMIESON, G.G., LAWRENCE, R.H., SHARMAN, P.R. & LUDBROOK, J. Effect of isometric hand-grip exercise on the carotid sinus baroreceptor reflex in man 33-37
MANCIA, G., LEONETTI, G., TERZOLI, L. & ZANCHETTI, A. Reflex control of renin release in essential hypertension 217-222
MAN IN'T VELD, A.J., see Derkx, F.H.M. et al.
MARSHALL, D.H., see Pelc, B. et al.
M_Assary, S.G., see Kurokawa, K. et al.
MAYOPoulos-SYMVouLIDOU, D., see Mountokalakis, Th. et al.
MENZIES, I.S., see Wheeler, P.G. et al.
MERIKAS, G., see Mountokalakis, Th. et al.
MICHAEL, J., see Patrick, J. et al.
MIDDLEMISs, D.N., see CONWAY, J. et al.
MILIC-EMILI, J., see SORli, J. et al.
MILLER, B.G., GRIMBLE, R.F. & TAYLOR, T.G. A new technique for measuring protein turnover in the gut, liver and kidneys of lean and obese mice with $[3H]$glutamic acid 425-430
MILLiez, P.L., see CHAU, N.P. et al.
MORTOLA, J.P. & SANT’AMBROGIO, G. Motion of the rib cage and the abdomen in tetraplegic patients 25-32
MOSS, N.G., see ALLISON, M.E.M. et al.
MOUNTOKALAKIS, TH., KARAMBASIS, TH., MAYOPOULOU-SYMVOULIDOU, D. & MERIKAS, G. Effect of inhibition of prostaglandin synthesis on the natriuresis induced by saline infusion in man 47-50
MULDER, J.L., see Cash, J.D. et al.

NACCARATO, R., see Okolicsanyi, L. et al.
NAZAR, K., CHWALBINSKA-MONETA, J., MACHALLA, J. & Kaciuba-Uscilko, H. Metabolic and body temperature changes during exercise in hyperthyroid patients 323-327
NICHOLSON, J.A. & PETERS, T.J. Subcellular distribution of hydrolase activities for glycine and leucine homopeptides in human jejunum 205-207
NICOLIS, G., see KAHN, T. et al.
NIS-DE WOLF, N., DE NUTTE, BRAUMAN, H. & CORVILAIN, J. Parathyroid hormone-like biological activity in urine 349-353
NOBLE, M.I.M. Editorial Review: The Frank-Starling curve 1-7
NOLAN, J.P., VENUTO, R.C. & GOLDMANN, G.S. Role of endotoxin in glycerol-induced renal failure in the rat 615-620
NORDIN, B.E.C., see Hodkinson, A. et al.; see also Pelc, B. et al.
NORÉE, L.-O., see Bergström, J. et al.

OKOLICSANYI, L., GHIDINI, O., ORLANDO, R., CORTELAZZO, S., Benedetti, G., NACCARATO, R. & MANITTO, P. An evaluation of bilirubin kinetics with respect to the diagnosis of Gilbert’s syndrome 539-547
ONESSTI, G., see Fernandes, M. et al.
O’RIORDAN, J.L.H., see CLEMENS, T.L. et al.
ORLANDO, R., see Okolicsanyi, L. et al.
OWENS, C.W.I. Induction of lysinuria in the rat by two para-substituted guanidinophenylalanines 673-677

Pernow, B., see Jorfeldt, L. et al.

Peters, T.J. & Seymour, C.A. The organelle pathology and demonstration of mitochondrial superoxide dismutase deficiency in two patients with Dubin–Johnson–Sprinz syndrome 549–553

Peters, T.J., see also Nicholson, J.A.

Potter, C.F., see Simmonds, H.A. et al.

Pownall, R. & Knapp, M.S. Circadian rhythmicity of delayed hypersensitivity to oxazolone in the rat 447–449

Poyart, C., see Bursaux, E. et al.

Purdie, D., see Lindsay, R. et al.

Purkiss, P., see McKenan, R.O. et al.

Rapoport, J., see Ish-Shalom, N. et al.

Reed, B., Weir, D. & Scott, J. The occurrence of folate-derived pteridines in rat liver 355–360

Reed, J.W., Ablett, M. & Cotes, J.E. Ventilatory responses to exercise and to carbon dioxide in mitral stenosis before and after valvulotomy: causes of tachypnoea 9–16

Reeve, J., see Wootton, R. et al.

Reubi, F., see Scherrer, S. et al.

Richards, P. Editorial Review: The metabolism and clinical relevance of the keto acid analogues of essential amino acids 589–593

Robertson, J.L., see Boddy, K. et al.

Rudolf, M., see Saunders, K.B.

Ryan, C.J., see Allison, M.E.M. et al.

Safar, M.E., see Chau, N.P. et al.

Sahota, A., see Simmonds, H.A. et al.

Samson, R.R., see Gardner, M.L.G. et al.

Sanders, E., see also Davies, M. et al.

Sant’Ambrogio, G., see Mortola, J.P.

Sassard, J., see Vincent, M. et al.

Saunders, K.B. & Rudolf, M. The interpretation of different measurements of airways obstruction in the presence of lung volume changes in bronchial asthma 313–321

Saunders, R.A., see Milner, A.D. et al.

Schaffalitzky de Muckadell, O.B., see Fahrenkrug, J. et al.

Schalekamp, M.A.D.H., see Derkx, F.H.M. et al.

Scherrer, S., Haldimann, B., Küpper, A., Reubi, F. & Bircher, J. Hepatic metabolism of aminopyrine in patients with chronic renal failure 133–140

Scott, J., see Reed, B. et al.

Seymour, C.A., see Peters, T.J.

Sharmain, P.R., see Mancia, G. et al.
Author Index

SIMON, A.Ch., see Chau, N.P. et al.

SLADEN, G.E., see Scarpello, J.H.B. et al.

SLATER, J.D.H., see Wiggins, R.C. et al.

SMART, R.C. & HOLDSWORTH, C.D. The measurement of calcium absorption and absorption rate with an external arm radioactivity counter 93–97

SMITH, G.W., see Dige, K.K. et al.

SOMMERVILLE, B.A., see Swaminathan, R. et al.

SORLI, J., GRASSINO, A., LORANGE, G. & MILIC-EMILI, J. Control of breathing in patients with chronic obstructive lung disease 295–304

SPARKS, J.C., see Sušić, D. et al.

SPELLACY, E., see Wootton, R. et al.

STEIN, R.M., see Kahn, T. et al.

STERLING, G.M., see Snashall, P.D. et al.

STOLL, R.W., see Wen, S.-F. et al.

STONE, R.A., see Levy, S.B. et al.

STULZAFT, J., see Delaporte, C. et al.

SWAMINATHAN, R., SOMMERVILLE, B.A. & CARE, A.D. Metabolism in vitro of 25-hydroxycholecalciferol in chicks fed on phosphorus-deficient diets 197–200

SWARTZ, C., see Fernandes, M. et al.

TAYLOR, T.G., see Miller, B.G. et al.

TAYLOR, W.H., see Roberts, N.B.

TELLEZ-YUDILEVICH, M., see Wootton, R. et al.

TERZOLI, L., see Mancia, G. et al.

TOTHILL, P., see MacPherson, J.N.

TRAVIS, J., see Davies, M. et al.

UNGAR, A., see Dighe, K.K. et al.

USKOKOVIC, M.R., see Clemens, T.L. et al.

VENUTO, R.C., see Nolan, J.P. et al.

VERHOEVEN, R.P., see Derkx, F.H.M. et al.

VESSBY, Β., BOBERG, J. & LITHELL, H. Lipolytic activities in post-heparin plasma in man measured with different substrate emulsions 201–203

VINCENT, M., BORNET, H., BERTHEZENE, F., DUPONT, J. & SASSARD, J. Thyroid function and blood pressure in two new strains of spontaneously hypertensive and normotensive rats 391–395

VINNARS, E., see Bergström, J. et al.
Wacker, M., see Baumann, J.M. et al.
Wadman, S.K., see Simmonds, H.A. et al.
Wales, J.K., see Thomas, T.H. et al.
Walter, S.J., see Shirley, D.G. et al.
Warren, D.J. & Ledingham, J.G.G. Renal vascular response to haemorrhage in the rabbit after pentobarbitone, chloralose-urethane and ether anaesthesia 489–494
Wassen, R., see Jorfeldt, L. et al.
Weatherall, D.J., see Pippard, M.J. et al.
Weir, D., see Reed, B. et al.
Weiss, Y.A., see Chau, N.P. et al.
Wen, S.-F., Boynar, J.W., Jr & Stoll, R.W. Effects of diuretics on renal glucose transport in the dog 481–488
Wennmalm, A. Influence of indomethacin on the systemic and pulmonary vascular resistance in man 141–145
Wenting, G.J., see Derkx, F.H.M. et al.
Whelpdale, P.H., see Dighe, K.K. et al.
Wiggins, R.C., Basar, I. & Slater, J.D.H. Effect of arterial pressure and inheritance on the sodium excretory capacity of normal young men 639–647
Williams, E.D., see Boddy, K. et al.
Williamson, D.H., see Royle, G. et al.
Winaver, J., Chaimovitz, C. & Better, O.S. Natriuretic effect of propranolol on dogs with chronic bile-duct ligation 603–607
Woodruff, A.W., see Mahmoud, A.A.F.
Woods, R.L., see Clark, E.H. et al.
Wrong, O.M., see Chadwick, V.S. et al.

Zanchetti, A., see Mancia, G. et al.
Zulueta, A., see Kurokawa, K. et al.
SUBJECT INDEX

Abdomen, motion of rib cage and, in tetraplegic patients MORTOLA, J.P. & SANT’AMBROGIO, G. 25–32
Absorption, intestinal, rat, changes in, after administration of 5-fluorouracil GARDNER, M.L.G., SAMSON, R.R. & HEADING, R.C. 411–418
Absorption, intestinal, role of, in increased oxalate absorption in patients with calcium-containing renal stones HODGKINSON, A. 291–294
Acetazolamide, effect of, on renal glucose transport in the dog WEN, S.-F., BOYNAR, J.W., JR & STOLL, R.W. 481–488
Acidosis, effects of, on glutamine metabolism and renal ammoniagenesis in the dog FINE, A., BENNETT, F.I. & ALLEYNE, G.A.O. 503–508
β-Adrenoreceptors, central nervous actions of antagonists to (Editorial Review) CONWAY, J., GREENWOOD, D.T. & MIDDLEMISS, D.N. 119–124
β-Adrenoreceptors, effect of α-adrenoreceptor stimulation on airways of normal and asthmatic man after blockade of SNASHALL, P.D., BOOTHER, F.A. & STERLING, G.M. 283–289
α-Adrenoreceptors, effect of stimulation of, on airways of normal and asthmatic man SNASHALL, P.D., BOOTHER, F.A. & STERLING, G.M. 283–289
β-Adrenoreceptor, effects of blockade of, on blood angiotensin rises after haemorrhage, renal ischaemia and frusemide diuresis in the dog BELL, C. & LANG, W.J. 17–23
Age, bone blood flow and, in the rat MACPHERSON, J.N. & TOTHILL, P. 111–113
Airway, effects of anaesthesia of, on ability to detect added inspiratory resistive loads CHAUDHARY, B.A. & BURKI, N.K. 621–626
Airways, pulmonary, assessment of obstruction of, in the presence of lung volume changes in bronchial asthma SAUNDERS, K., K.B. & RUDOLF, M. 313–321
Allopurinol, effect of, on purine biosynthesis by human lymphocytes in gout KAMOUN, K., CHANARD, J., BRAMI, M. & FUNCK-BRENTANO, J.L. 595–601
Amino acid analogues, effect of, on renal excretion of amino acids in the rat OWENS, C.W.I. 673–677
Amino acids, essential, metabolism and clinical relevance of keto acid analogues of (Editorial Review) Richards, P. 589–593

Amino acids, free, intracellular, content of, in muscle tissue of patients with chronic uraemia Bergström, J., Fürst, P., Norée, L.-O. & Vinners, E. 51–60

S-Aminolaevulinic acid, urinary concentration of, in diagnosis of acute intermittent porphyria Astrup, A.G. 251–256

Anaemias, iron-loading, intensive iron-chelation therapy with desferrioxamine in Pippard, M.J., Callender, S.T. & Weatherall, D.J. 99–106

Anaesthesia, renal vascular response to haemorrhage in the rabbit after, with pentobarbitone, chloralose–urethane and ether Warren, D.J. & Ledingham, J.G.G. 489–494

Analgescics, hepatic metabolism of aminopyrine in patients with chronic renal failure and history of abuse of Scherrer, S., Haldimann, B., Köpper, A., Reubi, F. & Bircher, J. 133–140

Angiotensin II (Des-Asp'), characterization of immunoreactive angiotensin in canine cerebrospinal fluid as Hutchinson, J.S., Scicsmann, J., Korner, P.I. & Johnston, C.I. 147–151

Angiotensin, effect of renal dopamine receptor and β-adrenoreceptor blockade on rises in, in blood after haemorrhage, renal ischaemia and frusemide diuresis in the dog Bell, C. & Lang, W.J. 17–23

Angiotensin II, plasma, blood pressure and, in patients on chronic haemodialysis McGrath, B.P. & Ledingham, J.G.G. 305–312

Antidiuretic hormone, effect of, on renal medullary adenosine cyclic monophosphate of rats Kurokawa, K., Aznar, E., Descoeuadres, C., Zulueta, A. & Massry, S.G. 573–577

Antiserum, effect of injection of, to tonin on blood pressure in one-kidney hypertensive rats Garcia, R., Boucher, R., Gutkowska, J., Kondo, K., Demasieux, S. & Genest, J. 457–461

Asthma, bronchial, interpretation of different measurements of airways obstruction in the presence of lung volume changes in Saunders, K.B. & Rudolf, M. 313–321

Asthma, effect of α-adrenoreceptor stimulation on airways of normal subjects and patients with Snashall, P.D., Boothier, F.A. & Sterling, G.M. 283–289

Atropine, effect of α-adrenoreceptor stimulation on airways of normal and asthmatic man after Snashall, P.D., Boothier, F.A. & Sterling, G.M. 283–289

Bacteria, colonic, metabolism of tartrate by, in man and rat Chadwick, V.S., Vince, A., Killingley, M. & Wrong, O.M. 273–281

Subject Index

Baroreceptors, carotid sinus, effect of isometric hand-grip exercise on reflex from MANCIA, G., IANNOS, J., JAMIESON, G.G., LAWRENCE, R.H., SHARMAN, P.R. & LUDBROOK, J. 33-37

Barter’s syndrome, contrasting patterns of prostaglandin excretion in children and adults with DRAY, P. 115-118

Barter’s syndrome, muscle electrolytes and fluid compartments in six children with DELAPORTE, C., STULZAFT, J., LOIRAT, C. & BROYER, M. 223-231

Basement membrane, glomerular, excretion of fragments of, in urine of patients with renal disease SANDERS, E., COLES, G.A. & DAVIES, M. 667-672

Bile acids, content of, in colon luminal material after ileal and caecal resection in the rat SCARPELLO, J.H.B., CARY, B.A. & SLADEN, G.E. 241-249

Bile acids, effect of chenodeoxycholic acid on, in patients with hyperlipoproteinaemia ANGELIN, B., EINAHRSSON, K. & LEIDJ, B. 451-455

Bile duct, natriuretic effect of propranolol on dogs with chronic ligation of WINAVER, J., CHAIMOVITZ, C. & BETTER, O.S. 603-607

Bilirubin, conjugated, excretion of, in isolated perfused rat kidney GOLLAN, J.L., DALLINGER, K.J.C. & BILLING, B.H. 381-389

Bilirubin, kinetics of, in plasma of patients with Gilbert’s syndrome OKOLICJSANYI, L., GHIDINI, O., ORLANDO, R., CORTELAZZO, S., BENEDETTI, G., NACCARATO, R. & MANITTO, P. 539-547

Blood flow, leg, human, determination of, by a thermodilution technique JORFELDT, L., JUHLIN-DANNFELT, A., PERNOW, B. & WASSEN, R. 517-523

Blood flow, renal, response of, to haemorrhage in the rabbit after pentobarbitone, chloralase-urethane and ether anaesthesia WARREN, D.J. & LEDINGHAM, J.G.G. 489-494

Blood pressure, arterial, effect of prolonged intracoronary infusion of dobutamine on, in conscious dogs LIARD, J.F. 153-160

Blood pressure, arterial, effect of, and inheritance on sodium excretory capacity of normal young men WIGGINS, R.C., BASAR, I. & SLATER, J.D.H. 639-647

Blood pressure, pulmonary and systemic, influence of indomethacin on, in man WENNMALM, A. 141-145

Blood pressure, thyroid function and, in two new strains of spontaneously hypertensive and normotensive rats VINCENT, M., BORNET, H., BERTHEZENE, F., DUPONT, J. & SASSARD, J. 391-395

Blood volume, blood pressure and, in patients on chronic haemodialysis McGrath, B.P. & LEDINGHAM, J.G.G. 305-312

Body mass, lean, determination of, in the Ghanaian KOJO ADDAE, S., DAKUBU, S., LARMIE, E.T., BOATIN, R. & BELCHER, E.H. 477-479

Bone, age and blood flow in, in the rat MACPHERSON, J.N. & TOTHILL, P. 111-113

Bone, blood flow in Paget’s disease of, and its response to calcitonin therapy WOOTTON, R., REEVE, J., SPELLACEY, E. & TELLEZ-YUDILEVICH, M. 69-74

Bone, effect of oophorectomy and calcium deprivation on, in the rat HODGKINSON, A., AARON, J.E., HORSMAN, A., McLACHLAN, M.S.P. & NORDIN, B.E.C. 439-446

Bone, uptake by, of pyrophosphate, diphosphonates and their technetium derivatives BISAZ, S., JUNG, A. & FLEISCH, H. 265-272
Subject Index

Breath test, measurement of expired 14CO$_2$ by Scherrer, S., Haldimann, B., Küffer, A., Reubi, F. & Bircher, J. 133–140

Bromosulphthalein, kinetics of, in plasma of patients with Gilbert's syndrome Okolicsanyi, L., Ghidini, O., Orlando, R., Cortelazzo, S., Benedetti, G., Naccarato, R. & Manitto, P. 539–547

Brush border, jejunal, human, location of hydrolase activities for glycerine and leucine homopeptides in Vessby, B., Boberg, J. & Lithell, H. 205–207

Calcium, absorption of, by duodenum in vitro of chicks fed on phosphorus-deficient diets Swaminathan, R., Sommerville, B.A. & Care, A.D. 197–200

Calcium, dietary, effect of oophorectomy and deprivation of, on bone mass in the rat Hodgkinson, A., Aaron, J.E., Horsman, A., McLachlan, M.S.F. & Nordin, B.E.C. 439–446

Calcium, increased oxalate absorption in patients with renal stones containing Hodgkinson, A. 291–294

Calcium, measurement of absorption of, and absorption rate with an external arm radioactivity counter Smart, R.C. & Holdsworth, C.D. 93–97

Calcium nephrolithiasis, effects of ethane-1-hydroxy-1,1-diphosphonate in Baumann, J.M., Bisaz, S., Fleisch, H. & Wacker, M. 509–516

Calculi, urinary, increased oxalate absorption in patients with, containing calcium Hodgkinson, A. 291–294

Carbon dioxide, ventilatory responses to exercise and, in mitral stenosis before and after valvulotomy Reed, J.W., Ablett, M. & Cotes, J.E. 9–16

Cardiac output, effect of prolonged intracoronary infusion of dobutamine on, in conscious dogs Liard, J.P. 153–160

Cardiac output, influence of indomethacin on, in man Wennmalm, A. 141–145

Cardiac output, studies of, in hydronephrotic rats Susić, D., Sparks, J.C., Machado, E.A. & Kentera, D. 361–367

Cellular immunity, circadian rhythms and Pownall, R. & Knapp, M.S. 447–449

Cerebrospinal fluid, canine, characterization of immunoreactive angiotensin in, as Des-Asp'-angiotensin II Hutchenson, J.S., Scicssmann, J., Korner, P.I. & Johnston, C.I. 147–151

Chelating agents, intensive therapy with, for iron in iron-loading anaemias Pippard, M.J., Callender, S.T. & Weatherall, D.J. 99–106

Chenodeoxycholic acid, effect of, on serum and biliary lipids in patients with hyperlipoproteinaemia Angelin, B., Einarssson, K. & Leijd, B. 451–455

Chest wall, deformation of, in breathing of tetraplegic patients Mortola, J.P. & Sant'Ambrogio, G. 25–32
Subject Index

Chloralose-urethane, renal vascular response to haemorrhage in the rabbit after anaesthesia with Warren, D.J. & Ledingham, J.G.G. 489–494

Chloride transport, use of human erythrocyte as model for studying action of diuretics on Brooks, B.A. & Lant, A.F. 679–683

Cholesterol, effect of chenodeoxycholic acid on, in patients with hyperlipoproteinaemia Angelin, B., Einasssson, K. & Leud, B. 451–455

Cholic acid, effect of chenodeoxycholic acid on, of bile in patients with hyperlipoproteinaemia Angelin, B., Einasssson, K. & Leud, B. 451–455

Circadian rhythm, delayed hypersensitivity to oxazolone in the rat as evidence of Pownall, R. & Knapp, M.S. 447–449

Coeliac disease, effect of hyperosmolar stimuli and, on permeability of human gastrointestinal tract Wheeler, P.G., Menzies, I.S. & Creamer, B. 495–501

Colon, bacterial metabolism of tartrate in, of man and rat Chadwick, V.S., Vince, A., Killingley, M. & Wrong, O.M. 273–281

Cyclic AMP see Adenosine 3':5'-cyclic monophosphate

Cystinuria, induction of, in the rat by two para-substituted guanidinophenylalanines Owens, C.W. 673–677

Deoxyadenosine, urinary excretion of, as diagnostic screening test in adenosine deaminase and purine nucleoside phosphorylase deficiency Simmonds, H.A., Sahota, A., Potter, C.F., Cameron, J.S. & Wadman, S.K. 579–584

Deoxycholic acid, effect of chenodeoxycholic acid on, of bile in patients with hyperlipoproteinaemia Angelin, B., Einasssson, K. & Leud, B. 451–455

Deoxyguanosine, urinary excretion of, as diagnostic screening test in adenosine deaminase and purine nucleoside phosphorylase deficiency Simmonds, H.A., Sahota, A., Potter, C.F., Cameron, J.S. & Wadman, S.K. 579–584

Deoxyinosine, urinary excretion of, as diagnostic screening test in adenosine deaminase and purine nucleoside phosphorylase deficiency Simmonds, H.A., Sahota, A., Potter, C.F., Cameron, J.S. & Wadman, S.K. 579–584

D Hoforroxime, intensive iron-chelation therapy with, in iron-loading anaemias Pippard, M.J., Callender, S.T. & Weatherall, D.J. 99–106

Diabetes mellitus, effect of, induced by streptozotocin on local and general responses to injury in the rat Elebute, E.A. & Little, R.A. 431–437

Dialysis, peritoneal, effect of, and infusion of essential amino acids on intracellular free amino acids in muscle tissue of patients with chronic uraemia Bergström, J., Fürst, P., Norée, L.-O. & Vinnars, E. 51–60

Diaphragm, effect of contraction of, in breathing of tetraplegic patients Mortola, J.P. & Sart’Ambrogio, G. 25–32

Diet, role of, in increased oxalate absorption in patients with calcium-containing renal stones Hodgkinson, A. 291–294

Subject Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphosphonates, uptake by bone of, and pyrophosphate and their technetium derivatives</td>
<td>BISAZ, S., JUNG, A. & FLEISCH, H.</td>
<td>265–272</td>
</tr>
<tr>
<td>Diuretics, effect of, on renal glucose transport in the dog</td>
<td>WEN, S.-F., BOYNAR, J.W., JR & STOLL, R.W.</td>
<td>481–488</td>
</tr>
<tr>
<td>Diuretics, use of human erythrocyte as model for studying action of, on sodium and chloride transport</td>
<td>BROOKS, B.A. & LANT, A.F.</td>
<td>679–683</td>
</tr>
<tr>
<td>Dobutamine, induction of hypertension in conscious dogs by prolonged intracoronary infusion of</td>
<td>LIARD, J.F.</td>
<td>153–160</td>
</tr>
<tr>
<td>Dopa mine, effect of blockage of renal receptors for, on rises in blood angiotensin after haemorrhage, renal ischaemia and frusemide diuresis in the dog</td>
<td>BELL, C. & LANG, W.J.</td>
<td>17–23</td>
</tr>
<tr>
<td>Erythrocytes, activity of uroporphyrinogen I synthase in, of patients with acute intermittent porphyria</td>
<td>ASTRUP, A.G.</td>
<td>251–256</td>
</tr>
<tr>
<td>Erythrocyte, human, use of, as model for study of action of diuretics on sodium and chloride transport</td>
<td>BROOKS, B.A. & LANT, A.F.</td>
<td>679–683</td>
</tr>
<tr>
<td>Erythrocytes, phosphate content of, in children on maintenance haemodialysis</td>
<td>BURSAUX, E., BROYER, M., POYART, C., BOHN, B. & JEAN, G.</td>
<td>85–91</td>
</tr>
<tr>
<td>Essential hypertension, see Hypertension, essential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethane-1-hydroxy-1,l-diphosphonate, effects of, in calcium nephrolithiasis</td>
<td>BAUMANN, J.M., BISAZ, S., FLEISCH, H. & WACKER, M.</td>
<td>509–516</td>
</tr>
<tr>
<td>Ether, renal vascular response to haemorrhage in the rabbit after anaesthesia with</td>
<td>WARREN, D.J. & LEDINGHAM, J.G.G.</td>
<td>489–494</td>
</tr>
<tr>
<td>Exercise, hand-grip, isometric, effect of, on carotid sinus baroreceptor reflex in man</td>
<td>MANCIA, G., IANNOS, J., JAMIESON, G.G., LAWRENCE, R.H., SHARMAN, P.R. & LUDBROOK, J.</td>
<td>33–37</td>
</tr>
<tr>
<td>Exercise, metabolic and body temperature changes during, in hyperthyroid patients</td>
<td>NAZAR, K., CHWALBINSKA-MONETA, J., MACHALLA, J. & KACIUBA, H.</td>
<td>323–327</td>
</tr>
<tr>
<td>Exercise, ventilatory responses to carbon dioxide and, in mitral stenosis before and after valvulotomy</td>
<td>REED, J.W., ABBOTT, M. & COTES, J.E.</td>
<td>9–16</td>
</tr>
<tr>
<td>Extracellular fluid, effect on volume of, of renal prostaglandins in two-kidney Goldblatt hypertensive dogs</td>
<td>DIGHE, K.K., SMITH, G.W., UNGAR, A. & WHELPDALE, P.H.</td>
<td>561–566</td>
</tr>
<tr>
<td>Extracellular fluid volume, effect of expansion of, before and after hemorrhage on renal sodium excretion in the dog</td>
<td>LIPSCHITZ, M.D.</td>
<td>567–572</td>
</tr>
<tr>
<td>Extracellular fluid volume, natriuresis in the dog without prior expansion of</td>
<td>KLEMMER, P.J., DE LOS SANTOS, C. & BLYTHE, W.B.</td>
<td>525–527</td>
</tr>
<tr>
<td>Fat, body, total, determination of, in the Ghanaian</td>
<td>KOJO ADDAE, S., DAKUBU, S., LARMIE, E.T., BOATIN, R. & BELCHER, E.H.</td>
<td>477–479</td>
</tr>
</tbody>
</table>

Fatigue, physiological analysis of weakness of skeletal muscle and (Editorial Review) EDWARDS, R.H.T. 463–470

5-Fluorouracil, changes in absorptive and peptide hydrolase activities in rat small intestine after administration of GARDNER, M.L.G., SAMSON, R.R. & HEADING, R.C. 411–418

Folate, occurrence of pteridines derived from, in rat liver REED, B., WEIR, D. & SCOTT, J. 355–360

Folate polyglutamates, catabolism of, in rat liver REED, B., WEIR, D. & SCOTT, J. 355–360

Frank-Starling curve (Editorial Review) NOBLE, M.I.M. 1–7

Furosemide, effect of, on renal glucose transport in the dog WEN, S.-F., BOYNAR, J.W., JR & STOLL, R.W. 481–488

Galactose, metabolic response to, as measure of hepatic glucose release in man ROYLE, G., KETTLEWELL, M.G.W., ILIC, V. & WILLIAMSON, D.H. 107–109

Gastrointestinal tract, human, effect of hyperosmolar stimuli and coeliac disease on permeability of WHEELER, P.G., MENZIES, I.S. & CREAMER, B. 495–501

Gilbert’s syndrome, plasma bilirubin kinetics and diagnosis of OKOLICSANYI, L., GHIDINI, O., ORLANDO, R., CORTELAZZO, S., BENEDETTI, G., NACCARATO, R. & MANITTO, P. 539–547

Glomerular filtration rate, effect of angiotensin II blockade on, before and after marked sodium depletion in patients with hypertension VAN HOOGDALEM, P., DONKER, A.J.M. & LEENEN, F.H.H. 75–83

Glomerulonephritis, human, polymorphonuclear leucocyte proteinase involvement in pathogenesis of SANDERS, E., COLES, G.A. & DAVIES, M. 667–672

Glucocorticoid, effects of deficiency of, on renal medullary adenosine cyclic monophosphate of rats KUROKAWA, K., AZNAR, E., DESCOEUDRES, C., ZULUETA, A. & MASSRY, S.G. 573–577

Glucose, intravenous glucose tolerance test in man and kinetics of insulin and CUNNINGHAM, V.J. & HEATH, D.F. 161–173

Glucose, metabolic response to galactose as measure of release of, from liver in man ROYLE, G., KETTLEWELL, M.G.W., ILIC, V. & WILLIAMSON, D.H. 107–109

Glucose tolerance test, kinetics of glucose and insulin in man and CUNNINGHAM, V.J. & HEATH, D.F. 161–173

Glucose transport, renal, effects of diuretics on, in the dog WEN, S.-F., BOYNAR, J.W., JR & STOLL, R.W. 481–488

¹³C Glutamic acid, injection of, in measurement of protein turnover in gut, liver and kidneys of lean and obese mice MILLER, B.G., GRIMBLE, R.F. & TAYLOR, T.G. 425–430

Glycerol, production of acute renal failure in rats by injection of BAUEREISS, K., HOFBAUER, K.G., KONRADS, A. & GROSS, F. 555–560

Glycerol, role of endotoxin in renal failure induced by, in the rat Nolan, J.P., VENUTO, R.C. & GOLDMANN, G.S. 615–620

Glycine, subcellular distribution of hydrolase activities for homopeptides of, in human jejenum VESSBY, B., BOBERG, J. & LITHELL, H. 204–207
Subject Index

Gout, purine biosynthesis *de novo* by human lymphocytes in Kamoun, K., Chanard, J., Brami, M. & Funck-Brentano, J.L. 595–601

Guadinophenylalanines, para-substituted, induction of lysinuria in the rat by Owens, C.W.I. 673–677

Haemodialysis, chronic, renin, blood volume and response to saralasin in patients on McGrath, B.P. & Ledingham, J.G.G. 305–312

Haemorrhage, effect of, on renal sodium excretion in the dog Lifschitz, M.D. 567–572

Heart rate, effect of prolonged intracoronary infusion of dobutamine on, in conscious dogs Liard, J.F. 153–160

Hemisuccinate, conjugate of bovine serum albumin and, of 1,25-dihydroxycholecalciferol used in radioimmunoassay Clemens, T.L., Hendy, G.N., Graham, R.F., Baggiolini, E.G., Uskokovic, M.R. & O’Riordan, J.L.H. 329–332

Heredity, effect of arterial pressure and, on sodium excretory capacity of normal young men Wiggins, R.C., Basar, I. & Slater, J.D.H. 639–647

Hydronephrosis, haemodynamic studies in rats with, with one-kidney renal-clip hypertension Susic, D., Sparks, J.C., Machado, E.A. & Kentera, D. 361–367

Hyperbilirubinaemia, conjugated, organelle pathology and mitochondrial Superoxide dismutase activity in patients with Peters, T.J. & Seymour, C.A. 549–553

Hypercapnia, breathing pattern of patients with, in chronic obstructive lung disease Sörli, J., Grassino, A., Lorange, G. & Milic-Emili, J. 295–304

Hyperparathyroidism, parathyroid hormone-like biological activity in urine of patients with Nijs-de Wolf, N., de Nutte, N., Brauman, H. & Corvilain, J. 349–353

Hypertension, cardiogenic, induction of, by prolonged intracoronary infusion of dobutamine in conscious dogs Liard, J.F. 153–160

Hypertension, effect of antitonin on, in uninephrectomized rats Garcia, R., Boucher, R., Gutowska, J., Kondo, K., Demasieux, S. & Genest, J. 457–461

Hypertension, essential, reflex control of renin release in Mancia, G., Leonetti, G., Terzoli, L. & Zanchetti, A. 217–222

Hypertension, experimental, renal prostaglandins in dogs with Dighe, K.K., Smith, G.W., Ungar, A. & Whelpdale, P.H. 561–566
Subject Index

Hypertension, renal-clip, one-kidney, haemodynamic studies in hydronephrotic rats with Susic, D., Sparks, J.C., Machado, E.A. & Kentera, D. 361-367
Hypertension, renal, effect of administration of Sar¹-Ala₈-angiotensin II during development and maintenance in the rat of Fernandes, M., Fiorentini, R., Onesti, G., Bellini, G., Gould, A.B., Hessan, H., Kim, K.E. & Swartz, C. 633-637
Hypertension, renal sodium excretion in normotensive young sons of parents with Wiggins, R.C., Basar, I. & Slater, J.D.H. 639-647
Hypertension, spontaneous, thyroid function and blood pressure in a new strain of rats with Vincent, M., Bornet, H., Berthezene, F., Dupont, F. & Sassard, J. 391-395
Hyperthyroidism, metabolic and body temperature changes during exercise in patients with Nazar, K., Chwalbinska-Moneta, J., Machalla, J. & Kaciuba, H. 323-327
Hypoparathyroidism, parathyroid hormone-like biological activity in urine of patients with Nus-de Wolf, N., de Nutte, N., Brauman, H. & Corvilain, J. 349-353
Hypothalamus, effect of carbamazepine on osmoreceptors of Thomas, T.H., Ball, S.G., Wales, J.K. & Lee, M.R. 419-424
Indomethacin, effect of, on natriuresis induced by saline infusion in man Mountokalakis, Th., Karambasis, Th., Mayopoulos-Symvoulidou, D. & Merikas, G. 47-50
Indomethacin, influence of, on systemic and pulmonary vascular resistance in man Wennmalm, A. 141-145
Insulin, intravenous glucose tolerance test in man and kinetics of glucose and Cunningham, V.J. & Heath, D.F. 161-173
Intestine, small, rat, changes in absorptive and peptide hydrolase activities in, after administration of 5-fluorouracil Gardner, M.L.G., Samson, R.R. & Heading, R.C. 411-418
Intestine, transport of salt and water in (Editorial Review) Turnberg, L.A. 337-348
Jaundice, obstructive, lecithin-cholesterol acyltransferase and lipoprotein abnormalities of Agorastos, J., Fox, C., Harry, D.S. & McIntyre, N. 369-379
Jejunum, human, subcellular distribution of hydrolase activities for glycine and leucine homopeptides in Vessby, B., Boberg, J. & Lithell, H. 205-207
Keto acid analogues, metabolism and clinical relevance of, of essential amino acids (Editorial Review) Richards, P. 589-593
Kidney, dog, effects of glucose transport, in the dog Wen, S.-F., Boynar, J.W., Jr & Stoll, R.W. 481-488
Kidney, effect of propranolol on haemodynamics of, in dogs with chronic bile-duct ligation Winaver, J., Chaimovitz, C. & Better, O.S. 603-607
Kidney, natriuresis in the dog without prior exposure of, to expansion of extracellular fluid volume Klemmer, P.J., de Los Santos, C. & Blythe, W.B. 525-527
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney, perfused, isolated, excretion of conjugated bilirubin in</td>
</tr>
<tr>
<td>Kidney, prostaglandins of, in renal hypertensive dogs</td>
</tr>
<tr>
<td>Kidney, rat, effects of glucocorticoid deficiency on adenosine cyclic monophosphate in medulla of</td>
</tr>
<tr>
<td>Kidney, response of blood flow in, to haemorrhage in the rabbit after pentobarbitone, chloralose-urethane and ether anaesthesia</td>
</tr>
<tr>
<td>Kininogenin, see Kallikrein</td>
</tr>
<tr>
<td>Lead acetate, effect of, on role of endotoxin in glycerol-induced renal failure in the rat</td>
</tr>
<tr>
<td>Lecithin—cholesterol acyltransferase, lipoprotein abnormalities of obstructive jaundice and</td>
</tr>
<tr>
<td>Leg, human, determination of blood flow in</td>
</tr>
<tr>
<td>Length—tension curve, ventricular muscle and (Editorial Review)</td>
</tr>
<tr>
<td>Leucine, subcellular distribution of hydrolase activities for homopeptides of, in human jejunum</td>
</tr>
<tr>
<td>Leucocytes, polymorphonuclear, evidence for pathogenic role of, in glomerulonephritis</td>
</tr>
<tr>
<td>Leucocytes, polymorphonuclear, involvement of, in pathogenesis of human glomeronephritis</td>
</tr>
<tr>
<td>Lignocaine, effects of anaesthesia of airways with, on ability to detect added inspiratory resistive loads</td>
</tr>
<tr>
<td>Lipoproteins, lecithin—cholesterol acyltransferase and abnormalities of, in obstructive jaundice</td>
</tr>
<tr>
<td>Lipoprotein lipase, activity resembling, in post-heparin plasma in man measured with different substrate emulsions</td>
</tr>
<tr>
<td>Lithocholic acid, effect of chenodeoxycholic acid on, of bile in patients with hyperlipoproteinaemia</td>
</tr>
<tr>
<td>Liver, metabolic response to galactose in man as measure of release of glucose from</td>
</tr>
<tr>
<td>Lung disease, obstructive, chronic, control of breathing in patients with Sörli, J., Grassino, A., Lorange, G. & Milic-Emili, J.</td>
</tr>
<tr>
<td>Lung, interpretation of different measurements of airways obstruction in chronic bronchial asthma in the presence of changes in volume of</td>
</tr>
<tr>
<td>Lymphocytes, human, purine biosynthesis de novo by, in gout</td>
</tr>
<tr>
<td>L-[α-15N]Lysine, rate of synthesis of human myofibrillar protein from muscle biopsies during infusion of</td>
</tr>
<tr>
<td>Lysinuria, induction of, in the rat by two para-substituted guanidinophenylalanines</td>
</tr>
<tr>
<td>Lysosomes, enzymes from, in human urine</td>
</tr>
</tbody>
</table>
Subject Index

Mecaptopurine, effect of, on splenomegaly in schistosomiasis in mice MAHMOUD, A.A.F. & WOODRUFF, A.W. 397–401
Methoxamine, effect of stimulation of alpha-adrenoreceptors with, on airways of normal and asthmatic man SNASHALL, P.D., BOOTHER, F.A. & STERLING, G.M. 283–289
Menopause, relation between plasma androstenedione and oestrone and androstenedione to oestrone conversion rates in women with or without fractures after PELC, B., MARSHALL, D.H., GUHA, P., KHAN, M.Y. & NORDIN, B.E.C. 125–131
3-Methylhistidine, catabolic rate of human myofibrillar protein derived from excretion of MCKERAN, R.O., HALLIDAY, D. & PURKISS, P. 471–475
Micropuncture, renal sodium and glucose transport in the dog studied by WEN, S.-F., BOYNAR, J.W., JR & STOLL, R.W. 481–488
Microspheres, radioactive, use of, for determination of bone blood flow in the rat MACPHERSON, J.N. & TOTHILL, P. 111–113
Microspheres, use of, in determination of renal vascular response to haemorrhage in the rabbit after pentobarbitone, chloralose-urethane and ether anaesthesia WARREN, D.J. & LEDINGHAM, J.G.G. 489–494
Mitochondria, liver, Superoxide dismutase activity in, of patients with Dubin-Johnson-Sprinz syndrome PETERS, T.J. & SEYMOUR, C.A. 549–553
Mitril stenosis, ventilatory responses to exercise and carbon dioxide in, before and after valvulotomy REED, J.W., ABLETT, M. & COTES, J.E. 9–16
Mouth occlusion pressure, measurement of, in patients with chronic obstructive lung disease SORLI, L., GRASSINO, A., LORANGE, G. & MILIC-EMILI, J. 295–304
Muscle, cardiac, length–tension curve and (Editorial Review) NOBLE, M.I.M. 1–7
Muscle, human, turnover of myofibrillar protein of, derived from 3-methylhistidine excretion and muscle biopsied during infusion of L-[alpha-15N]lysine MCKERAN, R.O., HALLIDAY, D. & PURKISS, P. 471–475
Muscle, intracellular free amino acids in, of patients with chronic uraemia and effect of peritoneal dialysis and infusion of essential amino acids BERGSTROM, J., FURST, P., NORREE, L.-O. & VINNARS, E. 51–60
Muscle, skeletal, physiological analysis of weakness of, and fatigue (Editorial Review) EDWARDS, R.H.T. 463–470
Myofibrillar protein, human, turnover of, derived from measurement of 3-methylhistidine excretion and muscle biopsies during infusion of L-[alpha-15N]lysine MCKERAN, R.O., HALLIDAY, D. & PURKISS, P. 471–475
Myopathy, physiological analysis of, and fatigue (Editorial Review) EDWARDS, R.H.T. 463–470
Natriuresis, effect of arterial pressure and inheritance on, in normal young men WIGGINS, R.C., BASAR, I. & SLATER, J.D.H. 639–647
Natriuresis, effect on, of renal prostaglandins in two-kidney Goldblatt hypertensive dogs DIGHE, K.K., SMITH, G.W., UNGAR, A. & WHelpDALE, P.H. 561–566
Neck chamber, variable-pressure, use of, to study reflex control of renin release in essential hypertension MANCIA, G., LEONETTI, G., TERZOLI, L. & ZANCHETTI, A. 217–222
Subject Index

Noradrenaline, responses of, to exercise in hyperthyroid patients NAZAR, K., CHWALBINSKA-MONETA, J., KACIUBA, H. 323–327

Obese mice, measurement of protein turnover in gut, liver and kidneys of, with [3H]glutamic acid MILLER, B.G., GRIMBLE, R.F. & TAYLOR, T.G. 425–430

Obstructive jaundice, see Jaundice

Oestron, relation between plasma androstenedione and oestrone and conversion rates of androstenedione into, in post-menopausal women with or without fractures PELC, B., MARSHALL, D.H., GUHA, P., KHAN, M.Y. & NORDIN, B.E.C. 125–131

Oophorectomy, effect of, and calcium deprivation on bone mass in the rat HODGKINSON, A., AARON, J.E., HORSMAN, A., MCLACHLAN, M.S.F. & NORDIN, B.E.C. 439–446

Osteitis deformans, skeletal blood flow in, and its response to calcitonin therapy WOOTTON, R., REEVE, J., SPELLACY, E. & TELLES-YUDILEVICH, M. 69–74

Oxalates, increased absorption of, in patients with calcium-containing renal stones HODGKINSON, A. 291–294

Oxazolone, circadian rhythm of delayed hypersensitivity to, in the rat POWNALL, R., KNAPP, M.S. 447–449

Oxygen, influence of indomethacin on uptake of, in man WENNMALM, A. 141–145

Paget's disease of bone, see Osteitis deformans

Pancreas, secretion of bicarbonate by, during infusion of porcine secretin in the pig FAHRENKRUG, J., SCHAFFALITZKY DE MUCKADELL, O.B. & HOLST, J.J. 61–68

Pentobarbitone, renal vascular response to haemorrhage in the rabbit after anaesthesia with WARREN, D.J. & LEDINGHAM, J.G.G. 489–494

Peptidase, change in activity of, in rat small intestine after administration of 5-fluorouracil GARDNER, M.L.G., SAMSON, R.R. & HEADING, R.C. 411–418

Peptide hydrolase, change in activity of, in rat small intestine after administration of 5-fluorouracil GARDNER, M.L.G., SAMSON, R.R. & HEADING, R.C. 411–418

Permeability, effect of hyperosmolar stimuli and coeliac disease on, of human gastrointestinal tract WHEELER, P.G., MENZIES, I.S. & CREAMER, B. 495–501

Phenacetin, hepatic metabolism of aminopyrine in patients with chronic renal failure and history of abuse of SCHERRER, S., HALDIMANN, B., KÜPFER, A., REUBI, F. & BIRCHER, J. 133–140

Phenobarbitone, effect of, on bilirubin kinetics in patients with Gilbert’s syndrome OKOLICSANYI, L., GHIDINI, O., ORLANDO, R., CORTELAZZO, S., BENEDETTI, G., NACCARATO, R. & MANITTO, P. 539–547

Phosphate, oxygen transport in blood in children on maintenance haemodialysis with low blood concentration of BURSAUX, E., BROYER, M., POYART, C., BOHN, B. & JEAN, G. 85–91

Plasma renin activity, blood pressure and, in patients on chronic haemodialysis MCGRATH, B.P. & LEDINGHAM, J.G.G. 305–312

Polyacrylamide gel electrophoresis, use of, for characterization of immunoreactive angiotensin in canine cerebrospinal fluid HUTCHINSON, J.S., SCICSMANN, J., KORNER, P.I. & JOHNSTON, C.I. 147–151

Polymophonuclear leucocytes, involvement of, in pathogenesis of human glomerulonephritis SANDERS, E., COLES, G.A. & DAVIES, M. 667–672

Porphyria, intermittent, acute, family studies on activity of uroporphyrinogen I synthase in diagnosis of ASTRUP, A.G. 251–256

Pressure receptors, see Baroreceptors

Pressure—volume curve, ventricular muscle and (Editorial Review) NOBLE, M.I.M. 1–7

Subject Index

Propranolol, natriuretic effect of, on dogs with chronic bile-duct ligation Winaver, J., Chaimovitz, C. & Better, O.S. 603–607

Prostaglandins, effect of inhibition of synthesis of, on natriuresis induced by saline infusion in man Mountokalakis, Th., Karambas, Th., Mayopoulos-Symvoulidou, D. & Merikas, G. 47–50

Prostaglandins, influence of inhibitor of synthesis of, on systemic and pulmonary vascular resistance in man Wennmalm, A. 141–145

Prostaglandins, renal, production of, in renal hypertensive dogs Dighe, K.K., Smith, G.W., Ungar, A. & Whelpdale, P.H. 561–566

Protein, measurement of turnover of, in gut, liver and kidneys of lean and obese mice with [3H]glutamic acid Miller, B.G., Grimble, R.F. & Taylor, T.G. 425–430

Proteinases, activity of, in urine from patients with renal disease Sanders, E., Coles, G.A. & Davies, M. 667–672

Pyrophosphate, uptake by bone of, and diphosphonates and their technetium derivatives Bisaz, S., Jung, A. & Fleisch, H. 265–272

Race, variation in relationship of urinary kallikrein activity to renal salt and water excretion according to Levy, S.B., Frigon, R.P. & Stone, R.A. 39–45

Radioimmunoassay, use of, for measurement of immunoreactive angiotensin in canine cerebrospinal fluid Hutchinson, J.S., Scissmann, J., Körner, P.I. & Johnston, C.I. 147–151

Receptors, low-pressure, renin release in essential hypertension and Mancia, G., Leonetti, G., Terzoli, L. & Zanchetti, A. 217–222

Renal artery, effect of antitoxin on blood pressure in rats with constriction of Garcia, R., Boucher, R., Gutkowski, J., Kondo, K., Demassieux, S. & Genest, J. 457–461

Renal failure, acute, effect of saralasin and serum in rats with, and myohaemoglobinuria Bauereiss, K., Hofbauer, K.G., Konrads, A. & Gross, F. 555–560

Renal failure, chronic, hepatic metabolism of aminopyrine in patients with Scherrer, S., Haldimann, B., Küffer, A., Reubi, F. & Bircher, J. 133–140

Renal failure, role of endotoxin in, induced in the rat by glycerol Nolan, J.P., Venuto, R.C. & Goldmann, G.S. 615–620

Renal nerves, effect of, on renin release after haemorrhage and renal ischaemia Bell, C. & Lang, W.J. 17–23

Renal nerves, lack of role for, in renal sodium reabsorption in conscious dogs Lifschitz, M.D. 567–572

Renin-angiotensin system, effect of saralasin on, in myohaemoglobinuric acute renal failure of rats Bauereiss, K., Hofbauer, K.G., Konrads, A. & Gross, F. 555–560

Renin activity, plasma, blood pressure and, in patients on chronic haemodialysis
McGrath, B.P. & Ledingham, J.G.G.

Renin, effect of administration of Sar\(^1\)-Ala\(^8\)-angiotensin II on plasma concentration of, in the rat
Fernandes, M., Fiorentini, R., Onesti, G., Bellini, G., Gould, A.B., Hessan, H., Kim, K.E. & Swartz, C.
633–637

Renin, effects of renal dopamine receptor and \(\beta\)-adrenoreceptor blockade on release of, in the dog
Bell, C. & Lang, W.J.
17–23

Renin, plasma, relationship between plasma aldosterone, potassium excretion and plasma potassium and
activity of, in chronic renal disease in man
Kahn, T., Kaji, D.M., Nicolis, G., Krakoff, L.R. & Stein, R.M.
661–666

Renin, reflex control of release of, in essential hypertension
Mancia, G., Leonetti, G., Terzoli, L. & Zanchetti, A.
217–222

Respiratory sensation, effects of anaesthesia of airway on, assessed by detection of resistive loads
Chaudhary, B.A. & Burki, N.K.
621–626

Rib cage, motion of abdomen and, in tetraplegic patients
Mortola, J.P. & Sant'Ambrogio, G.
25–32

Saliva, concentration of tonin in, of hypertensive rats
Garcia, R., Boucher, R., Gutkowska, J., Kondo, K., DeMassieux, S. & Genest, J.
457–461

Saralasin, effect of, in myohaemoglobinuric acute renal failure of rats
Baureiss, K., Hofbauer, K.G., Konrads, A. & Gross, F.
555–560

Saralasin, renin, blood volume and response to, in patients on chronic haemodialysis
McGrath, B.P. & Ledingham, J.G.G.
305–312

Schistosomiasis, causation of splenomegaly in mice with
Mahmoud, A.A.F. & Woodruff, A.W.
397–401

Scintillation counting, external, measurement of calcium absorption and absorption rate by
Smart, R.C. & Holdsworth, C.D.
93–97

Secretin, porcine, elimination of, in pigs
Fahrenkrug, J., Schaffalitzky de Muckadell, O.B. & Holst, J.J.
61–68

Shock, traumatic, effect of streptozotocin-diabetes on local and general responses to, in the rat
Elebute, E.A. & Little, R.A.
431–437

Skin tests, circadian rhythms and
Pownall, R. & Knapp, M.S.
447–449

Sodium, angiotensin II blockade before and after marked depletion of, in patients with hypertension
75–83

Sodium chloride, effect of acute extracellular volume expansion on reabsorption of, in diluting segment in
man
Ish-Shalom, N., Rapoport, J., Chaimovitz, C. & Better, O.S.
333–336

Sodium, effect of arterial pressure and inheritance on excretion of, in normal young men
Wiggins, R.C., Basar, I. & Slater, J.D.H.
639–647

Sodium, effect of indomethacin on excretion of, before and after saline infusion in man
Mountokalakis, Th., Karambasis, Th., Mayopoulos-Symvoulidou, D. & Merikas, G.
45–50

Sodium, effect of zinc on transport of, in human leucocytes
in vitro
585–587

Sodium, exchangeable, total, determination of, and total body water in the Ghanaian
477–479

Sodium, excretion of, after propranolol in dogs with chronic bile-duct ligation
Winaver, J., Chaimovitz, C. & Better, O.S.
603–607

Sodium, increased urinary excretion of, in the dog without prior expansion of extracellular fluid
volume
Klemmer, P.J., de Los Santos, C. & Blythe, W.B.
525–527

Sodium, intestinal transport of water and (Editorial Review)
Turnberg, L.A.
337–348

Sodium, lack of role for renal nerves in renal reabsorption of, in conscious dogs
Lipschitz, M.D.
567–572

Sodium, measurement of total body content of, in hypertensive subjects by total-body neutron-activation
analysis
in vivo
187–191

Sodium, muscle, fluid compartments and, in six children with Bartter's syndrome
Delaporte, C., Stulzaft, J., Loirat, C. & Broyer, M.
223–231
Subject Index

Sodium transport, use of human erythrocyte as model for studying action of diuretics on BROOKS, B.A. & LANT, A.F. 679–683
Sodium, urinary kallikrein activity in subjects on restricted dietary intake of LEVY, S.B., FRIGON, R.P. & STONE, R.A. 39–45
Spinal injuries, motion of rib cage and abdomen in patients with MORTOLA, J.P. & SANT’AMBROGIO, G. 25–32
Splenomegaly, causation of, in schistosomiasis in mice MAHMOUD, A.A.F. & WOODRUFF, A.W. 397–401
Stones, renal, increased oxalate absorption in patients with, containing calcium HODGKINSON, A. 291–294
Streptozotocin-diabetes, effect of, on local and general response to injury in the rat ELEBUTE, E.A. & LITTLE, R.A. 431–437
Submaxillary gland, concentration of tonin in, of hypertensive rats GARCIA, R., BOUCHER, R., GUTKOWSKA, J., KONDO, K., DEMASSIEUX, S. & GENEST, J. 457–461
Sulphate space, blood pressure and, in patients on chronic haemodialysis McGrath, B.P. & LEDINGHAM, J.G.O. 305–312
Tachypnoea, causes of, during exercise in mitral stenosis REED, J.W., ABLETT, M. & COTES, J.E. 9–16
Technetium (99Tc), uptake by bone of pyrophosphate, diphosphonates and their complexes with BISAZ, S., JUNG, A. & FLEISCH, H. 265–272
Temperature, body, changes in metabolism and, in hyperthyroid patients during exercise NAZAR, K., CHWALBINSKA-MONETA, J., MACHALLA, J. & KACIUBA, H. 323–327
Tetraplegia, motion of rib cage and abdomen in patients with MORTOLA, J.P. & SANT’AMBROGIO, G. 25–32
Thalassaemia, iron-chelation therapy with desferrioxamine in PIPPAARD, M.J., CALLENDER, S.T. & WEATHERALL, D.J. 99–106
Thyroid gland, function of, and blood pressure in two new strains of spontaneously hypertensive and normotensive rats VINCENT, M., BORNET, H., BERTHEZENE, F., DUPONT, J. & SASSARD, J. 391–395
Transamination, efficiency of, of keto acid analogues of essential amino acids (Editorial Review) RICHARDS, P. 589–593
Transport, intestinal, of salt and water (Editorial Review) TURNBERG, L.A. 337–348
Triglycerides, lipolytic activities in post-heparin plasma in man measured with different substrate emulsions of VESSBY, B., BOBERG, J. & LITHELL, H. 201–203

Triglycerides, serum, effect of chenodeoxycholic acid on, in patients with hyperlipoproteinemia ANGELIN, B., EINARSSON, K. & LEIJD, B. 451–455

Tubular reabsorption, conjugated bilirubin and, in perfused isolated rat kidney GOLLAN, J.L., DALLINGER, K.J.C. & BILLING, B.H. 381–389

Uraemia, chronic, intracellular free amino acids in muscle tissue of patients with BERGSTROM, J., FURST, P., NORÈE, L.-O. & VINNARS, E. 51–60

Uroporphyrinogen I synthase, family studies of activity of, in diagnosis of acute intermittent porphyria ASTRUP, A.G. 251–256

Ursodeoxycholic acid, effect of chenodeoxycholic acid on, of bile in patients with hyperlipoproteinemia ANGELIN, B., EINARSSON, K. & LEIJD, B. 451–455

Valvulotomy, ventilatory responses to exercise and carbon dioxide in mitral stenosis before and after REED, J.W., ABLETT, M. & COTES, J.E. 9–16

Ventilation, responses of, to exercise and carbon dioxide in mitral stenosis before and after valvulotomy REED, J.W., ABLETT, M. & COTES, J.E. 9–16

Ventricle, heart, length–tension curve for muscle of (Editorial Review) NOBLE, M.I.M. 1–7

Volume expansion, effect of indomethacin on natriuresis after, by saline infusion in man MOUNTOKALAKIS, TH., KARAMBASIS, TH., MAYOPOULOU-SYMVOULIDOU, D. & MERIKAS, G. 47–50

Water, body, total, determination of, in the Ghanaian KOJO ADDAE, S., DAKUBU, S., LARMIE, E.T., BOATIN, R. & BELCHER, E.H. 477–479

Water, intestinal transport of sodium and (Editorial Review) TURNBERG, L.A. 337–348

Correction

DRAY, F. Bartter’s syndrome: contrasting patterns of prostaglandin excretion in children and adults. Clinical Science and Molecular Medicine, 54, 115–118

Page 117, Table 1: values in the second column for ‘Range’ under ‘Normal children’ should read (0.11–0.50).