Cardiovascular disease is associated with high-fat-diet-induced liver damage and up-regulation of the hepatic expression of hypoxia-inducible factor 1α in a rat model

Adriana L. BURGUEÑO*, Tomas F. GIANOTTI*, Noelia G. MANSILLA*, Carlos J. PIROLA*1 and Silvia SOOKOIAN†1

*Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires–National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
†Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires–National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Abstract
CVD (cardiovascular disease) is associated with abnormal liver enzymes, and NAFLD (non-alcoholic fatty liver disease) is independently associated with cardiovascular risk. To gain insights into the molecular events underlying the association between liver enzymes and CVD, we developed an HFD (high-fat diet)-induced NAFLD in the SHR (spontaneously hypertensive rat) and its control WKY (Wistar–Kyoto) rat strain. We hypothesized that hepatic induction of Hif1α (hypoxia-inducible factor 1α) might be the link between CVD and liver injury. Male SHRs (n = 13) and WKY rats (n = 14) at 16 weeks of age were divided into two experimental groups: standard chow diet and HFD (10 weeks). HFD-fed rats, irrespective of the strain, developed NAFLD; however, only HFD-SHRs had focus of lobular inflammation and high levels of hepatic TNFα (tumour necrosis factor α). SHRs had significantly higher liver weight and ALT (alanine aminotransferase) levels, irrespective of NAFLD. Liver abundance of Hif1α mRNA and Hif1α protein were overexpressed in SHRs (P < 0.04) and were significantly correlated with ALT levels (R = 0.50, P < 0.006). This effect was not reverted by a direct acting splanchnic vasodilator (hydralazine). Angiogenesis may be induced by the HFD, but the disease model showed significantly higher hepatic Vegf (vascular endothelial growth factor) levels (P < 0.025) even in absence of dietary insult. Hif1α mRNA overexpression was not observed in other tissues. Liver mRNA of Nr1d1 (nuclear receptor subfamily 1, group D, member 1; Ppara [Ppar (peroxisome-proliferator-activated receptor)] α; P < 0.05), Pparg (Pparγ; P < 0.001) and Sir1t1 (Sir1t1; P < 0.001) were significantly up-regulated in SHRs, irrespective of NAFLD. Sir1t1 and Hif1α mRNAs were significantly correlated (R = 0.71, P < 0.00002). In conclusion, CVD is associated with Hif1α-related liver damage, hepatomegaly and reprogramming of liver metabolism, probably to compensate metabolic demands.

Key words: arterial hypertension, fatty liver, hypoxia, hypoxia inducible factor 1α, liver damage, metabolic syndrome, non-alcoholic fatty liver disease

INTRODUCTION

NAFLD (non-alcoholic fatty liver disease), a disease characterized by abnormal fat accumulation in the liver, has been recently regarded as the hepatic component of the metabolic syndrome [1]. The metabolic syndrome has received considerable attention over the last decades, as the cluster of its associated diseases significantly increases the risk of CVD (cardiovascular disease) mortality [2]; in fact, it is also known as cardiometabolic syndrome. Although T2D (Type 2 diabetes), obesity and elevated plasma triacylglycerols are well-known contributors to cardiovascular morbimortality, NAFLD has been recently suspected as playing

Abbreviations: ALT, alanine aminotransferase; CVD, cardiovascular disease; G6Pdh, glyceraldehyde-3-phosphate dehydrogenase; HFD, high-fat diet; H&E, haematoxylin and eosin; Hif1α (Hif1α), hypoxia-inducible factor 1α; Hif4α, hepatocyte nuclear factor 4α; HOMA, homeostasis model assessment; IL-6 (IL6), interleukin-6; IR, insulin resistance; NAFLD, non-alcoholic fatty liver disease; Nr1d1, nuclear receptor subfamily 1, group D, member 1; PAS, periodic acid–Schiff; Pgc1a, phosphoenolpyruvate carboxykinase 1; Ppar, peroxisome-proliferator-activated receptor; Ppara, Pparα; Pparγ, Pparγ; Ppargc1a, Pparγ co-activator-1α; QTL, quantitative trait locus; RT, real-time; SBP, systolic blood pressure; SCD, standard chow diet; SHR, spontaneously hypertensive rat; Sir1t1 (Sir1t1); TAT, TATA box-binding protein; T2D, Type 2 diabetes; Tnfa (Tnfa), tumour necrosis factor α; VAT, visceral adipose tissue; Vegf (Vegf), vascular endothelial growth factor; WAT, Wistar–Kyoto.

*These authors contributed equally to this study.

Correspondence: Dr Silvia Soookian (email soookian.silvia@lanari.fmed.uba.ar) or Dr Carlos J. Pirola (email pirola.carlos@lanari.fmed.uba.ar)
a role in the development of CVD, independently of traditional risk factors [3]. For instance, a recent meta-analysis demonstrated that NAFLD patients have an increased risk of atherosclerosis, as they carry a 13% increase in carotid intima-media thickness [4]. In addition, we have observed that NAFLD is associated not only with increased circulating levels of molecular mediators of atherosclerosis, but also with their hepatic expression [5,6].

Interestingly, epidemiological evidence and clinical studies not only suggest that NAFLD might participate in the development and progression of the cardiovascular phenotype, but also that CVD is associated with abnormal levels of surrogate markers of liver injury, regardless of the presence of NAFLD. For example, several studies have consistently reported an association between abnormal liver enzymes, such as ALT (alanine aminotransferase), and increased incidence of cardiovascular events [7–10]. Moreover, abnormal liver function tests were associated with essential hypertension [11]. Hence CVD and liver injury seem to be strongly associated, but the mechanisms behind this relationship are unknown. Likewise, the biological mechanisms responsible for the association between NAFLD and CVD are still poorly understood. In addition, studies characterizing fatty liver in the absence of IR (insulin resistance) and cardiovascular risk factors are scarce because of methodological limitations in dissecting clinical phenotypes that usually co-exist.

To gain insights into the molecular events underlying the association between liver enzymes and CVD, we took advantage of a rat model of CVD and the metabolic syndrome, the SHR (spontaneously hypertensive rat). We developed an HFD (high-fat diet)-induced model of NAFLD in SHR and their control normotensive insulin-sensitive WKY (Wistar–Kyoto) rat strain. The SHR strain has been studied and characterized for over 30 years; in fact, the SHR is the most widely used rodent model of CVD, showing all the metabolic traits related with the human disorder, including high blood pressure, dyslipidaemia and IR, and many other physiological and pathophysiological phenotypes [12,13]. Indeed, genetic analysis of the SHR strain showed QTLs (quantitative trait loci) for haemodynamic and metabolic traits on several chromosomes, including QTLs associated with phenotypes of lipid and carbohydrate metabolism [14]. In addition, the SHR strain has cardiac hypertrophy [15,16].

In the present study, we hypothesized that the liver is a target for CVD-associated organ damage, and up-regulation of liver Hif1α (hypoxia-inducible factor 1α) might be the link between CVD and liver injury. In addition, we explored whether CVD is associated with dysregulated patterns of liver gene transcription.

MATERIALS AND METHODS

Animals

SHRs (n = 13) and WKY rats (n = 14) (Charles River Laboratories) at 16 weeks of age were included in this experiment. The rats were housed under controlled conditions of temperature (23 ± 1°C) and light (12 h light/12 h dark cycle). After acclimatization for 1 week, rats of both strains were randomly divided into two experimental groups. One group received SCD for 10 weeks (control group, SCD; n = 7 in both strains), in an amount restricted to that consumed at the beginning of the experiment. The other group was allowed ad libitum access to a high-fat solid diet (HFD, 40% (w/w) bovine and porcine fat added to the standard chow, as described previously [17]; SHR, n = 6 and WKY, n = 7) for 10 weeks. In all of the animals, food intake and body weight were monitored daily for a 20-week period, and SBP (systolic blood pressure) was measured before and during the experiment weekly, as described previously [18].

At the completion of the study, food was withdrawn from 08:00 h to 16:00 h before the animals were anaesthetized with pentobarbital, and blood from individual rats was collected by cardiac puncture to determine plasma and serum levels of different parameters. Liver tissue was excised and weighed, and heart, intraperitoneal fat and retroperitoneal fat were weighed. Liver, heart and fat weights are expressed as liver/rat length (taken from nose to the tail origin) ratio (g/cm) to avoid the influence of body weight change. Liver was quickly snap-frozen and stored in −76°C until gene expression analysis. A portion of each liver was fixed in 10% formalin for histological analysis. Serum and sodium EDTA/plasma was obtained by centrifugation and stored at −80°C until needed. Fasting glucose, serum triacylglycerols, serum glutamic–pyruvate transaminase or ALT (alanine aminotransferase) and AP (alkaline phosphatase) levels were measured by an automatic biochemical analytical system (Architect; Abbott). Plasma insulin levels were determined using a commercial quantitative ultrasensitive rat ELISA kit (Crystal Chem), according to the manufacturer’s instructions. IR was calculated by the HOMA (homeostasis model assessment) index [fasting plasma insulin (μ-units/ml) × fasting plasma glucose (mmol/l)/22.5]. Leptin was measured by ELISA (Leptin ELISA Development Kit; PeproTech). All of these measurements were performed in a blinded manner.

Glucose level in liver tissue was measured using an enzymatic method (Accutrend; Roche Biodiagnostic); the amount is expressed per mg of liver protein after homogenization. The suspension was centrifuged at 15 000 g for 10 min, the pellet was used for total protein determination using Bradford’s reagent and the supernatant evaporated to dryness. The residue was resuspended in PBS.

All animals received humane care, and the studies were conducted according to the regulations for the use and care of experimental animals.

Histological analysis of liver tissue

Light microscopy was used to assess steatosis and necroinflammation levels from sections of formalin-fixed paraffin-embedded samples that were stained with H&E (haematoxylin and eosin) and Masson’s trichrome. The degree of steatosis was assessed irrespective of the experimental groups, and was graded from 0 to 4 according to the amount of fatty change [19]. The severity of necroinflammatory activity was expressed on a three-point scale as follows: grade 1 (mild), grade 2 (moderate) and grade 3 (severe), as described by Brunt et al. [19].

The amount of hepatocellular glycogen was assessed by PAS (periodic acid–Schiff) stain. Tissue glycogen content was
quantified using digital image analysis as described previously by our group [20].

Measurement of liver triacylglycerol content
The liver triacylglycerol content was determined using an automatic biochemical analytical system (Architect; Abbott), and the results are expressed as μg of triacylglycerol/mg of liver tissue (μg/mg of liver).

Evaluation of angiogenesis and inflammatory response
Tissue Vegf (vascular endothelial growth factor) and TNFα (tumour necrosis factor α) levels were measured in duplicate using an rat-specific ELISAs (Rat VEGF and Murine TNFα ELISA development kits; PeproTech). Plates were read at 405 nm using a microplate spectrophotometer. All samples were tested in a blinded manner. The results are normalized by mg of liver protein in the extract.

RNA preparation and RT (real-time)–PCR for quantitative assessment of mRNA expression
Total RNA was prepared from rat livers using the phenol extraction step method, with an additional DNase digestion. The relative abundance of the target gene mRNA was normalized to the amount of a housekeeping gene [Tbp (TATA box-binding protein) or Gapdh (glyceraldehyde-3-phosphate dehydrogenase)] to carry out comparisons between the groups. Tbp and Gapdh were found to be the most stable reference genes for testing liver and adipose tissue mRNA expression respectively, among other housekeeping genes tested before starting the experiment [cyclophilin A (β-actin, peptidylprolyl isomerase A) and GAPDH]. The levels of mRNA are expressed as the ratio of the estimated amount of the target gene relative to Tbp or Gapdh mRNA levels using fluorescence threshold cycle values (Ct) calculated for each sample, and the estimated efficiency of the PCR for each product was expressed as the average of each sample efficiency value obtained.

The specificity of amplification and absence of primer dimers were confirmed using melting curve analysis and 1 % agarose gel electrophoresis at the end of each run. The primer sequences and the resulting PCR product lengths are shown in Supplementary Table S1 (at http://www.clinsci.org/cs/124/cs1240053add.htm). Details of RT–PCR for the quantitative assessment of mRNA expression were as reported previously [18].

Western blot analysis of Hif1α protein
Nuclear proteins from liver tissue were denatured in the SDS sample buffer, separated by SDS/PAGE (8 % gel) and electrotransferred on to Hybond-PVDF membranes (GE Healthcare). After blocking with 5 % non-fat dry milk in TBST (Tris-buffered saline with Tween) buffer [20 mmol/l Tris/HCl (pH 7.6), 137 mmol/l NaCl and 0.25 % Tween 20], the membranes were probed with rabbit polyclonal anti-Hif1α (1:1000 dilution; GeneTex), followed by incubation with HRP (horseradish peroxidase)-conjugated polyclonal anti-(rabbit IgG) secondary antibody (1:15 000 dilution; GeneTex). Equal protein loading was confirmed by reblotting of the membranes with a goat polyclonal antibody against rabbit β-actin (1:500 dilution; GeneTex). Binding of the antibody was subsequently visualized with enhanced chemiluminescence reagent (GE Healthcare), and the band images were detected and analysed using the Lab Works Analysis Software (Ultra-Violet Products).

Per os treatment with hydralazine
Male SHRs (at 14 and 16 weeks of age; n = 6 per group) were given either pellets containing the vasodilator hydralazine (10 mg/kg of body weight per day) or pellets without the drug for 28 consecutive days. Blood pressure was monitored weekly, and treatment with hydralazine significantly decreased SBP (see Supplementary Figure S1 at http://www.clinsci.org/cs/124/cs1240053add.htm)). The animals were killed and liver tissue samples were obtained to measure the Hif1α and Sirt1 (sirtuin 1) mRNA levels, as described above.

Statistical analysis
Quantitative data are expressed as means ± S.E.M., unless otherwise indicated. The data were also adjusted for body length whenever applicable. Pairwise mean differences were evaluated using the non-parametric Mann–Whitney test, as most of the variables were ratios and not normally distributed, and non-homogeneous variances between the groups were evident. For the comparison of more than two groups, we used the Kruskall–Wallis test or two-way ANOVA after log-transformation of the dependent variable using strain and diet as categorical factors. To test the differences in steatosis gradation (as a categorical response variable), we used ANCOVA (analysis of co-variance) with ordinal multinomial distribution and probit as a link function and strain and diet as categorical factors adjusting for the indicated variables. Correlation between two variables was determined using the Spearman rank correlation test. A value of P < 0.05 was considered to be statistically significant. We used the Statistica program package StatSoft to perform all the analyses.

RESULTS
Phenotypic characterization of the disease model in comparison with the control strain after exposure to long-term HFD feeding
As described above, the SHR strain is an unquestionable rat model of CVD. In the present study, we hypothesized that CVD is associated with some degree of liver injury. In addition, we hypothesized that a phenotype characterized by the presence of CVD might be also clustered with phenotypic and genotypic changes in the liver, which render the organ more sensitive to exposure to nutritional insults such as an HFD, and thus more prone to develop a severe form of NAFLD. Hence we explored the phenotypic characteristics of SHRs in comparison with their controls, the WKY rats, after exposure to long-term HFD.

Overall, compared with the control strain, SHRs clustered some features of the metabolic syndrome, including elevated blood pressure and IR (Figure 1).

Exposure to HFD was associated with significant changes in both strains, including an increase in serum leptin levels and triacylglycerols (reduced levels of serum triacylglycerols in SHRs in comparison with normotensive WKY rats

www.clinsci.org 55
have similarly been reported [21]) and visceral fat deposition (Figure 1). In fact, in the whole experiment leptin levels were highly correlated with visceral fat deposition (Spearman $R = 0.74$, $P < 0.0001$).

Body weight was significantly increased only in the control strain (WKY) after exposure to the HFD; the disease model (SHR) showed a trend that did not reach statistical significance (Figure 1). The control strain did not show changes either in the HOMA index or blood pressure after the exposure to the HFD (Figure 1).

Analysis of liver-related characteristics in the disease model in comparison with the control strain after exposure to long-term HFD feeding

HFD-fed rats irrespective of strain developed severe hepatic microvesicular and macrovesicular steatosis (Figures 2B and 2D). In fact, at the end of the experiment, semi-quantitative evaluation of the liver steatosis from H&E staining of liver sections using a steatosis score demonstrated significant differences between the SCD and the HFD groups, regardless of the rat strain (ANCOVA with steatosis gradation as a categorical response variable with ordinal multinomial distribution and probit as a link function, adjusted by the HOMA-IR, animal length and adipose tissue as continuous predictor variables) (SHR-SCD, 0.17 ± 0.30; SHR-HFD, 1.50 ± 0.22; WKY-SCD, 0.01 ± 0.28; WKY-HFD, 1.63 ± 0.25; $P < 0.00001$, $\chi^2 = 24.5$).

Biochemical analysis of hepatic triacylglycerol content also showed that the amount of triacylglycerols was significantly ($P < 0.00002$) increased in the HFD group (regardless of the rat strain, SHR, $200 \pm 26.8 \mu g/mg$ of liver; and WKY, $197.6 \pm 27.1 \mu g/mg$ of liver) in comparison with SCD rats (SHR, $62.3 \pm 29.3 \mu g/mg$ of liver; and WKY, $48.3 \pm 28.2 \mu g/mg$ of liver).

Interestingly, SHRs that developed NAFLD had significantly higher scores of histological necroinflammatory activity...
High-fat-diet-induced liver damage and cardiovascular disease

Figure 2 Liver histology and enzymes in the disease model (SHR) and the control strain (WKY) according to diet

Left-hand panel, liver histology of a representative animal from each experimental group. H&E staining of liver sections at the end of the experiment of a representative rat from each experimental group. The livers of rats fed on the SCD had normal histology and the absence of fat accumulation (A, SHR-SCD; C, WKY-SCD). The liver of SHRs fed on the HFD had severe panlobular microvesicular and macrovesicular steatosis and scattered focus of lobular inflammation (B, arrow). The livers of WKY rats fed on the HFD had severe panlobular microvesicular and macrovesicular steatosis without lobular inflammation (D). Original magnification, ×400. Right-hand panel, ALT and AP levels in each experimental group. Statistical significance for SHR versus (vs) WKY represents the comparison between the strains independent of diet by two-way ANOVA. NS, not significant.

(0.72 ± 0.19) in comparison with the WKT strain (0.33 ± 0.12; \(P < 0.04, \chi = 4.3 \)). Figure 2(B) shows a scattered focus of inflammation in a representative SHR rat that developed fatty liver.

Regarding other liver-related features, we observed that SHRs as a group showed significantly higher liver weight compared with the control strain, regardless of HFD (Figure 1). In addition, the disease model showed significantly higher levels of AP and ALT, regardless the presence of fatty liver (Figure 2). In fact, AP was significantly higher in SHRs compared with WKY rats, even after adjusting by the HOMA index. A significant interaction between HFD and rat strain on AP was also observed (\(P < 0.01 \)). AP levels probably reflect liver isoenzyme because there was a significantly positive correlation between AP levels and liver weight (Pearson \(R = 0.65, P < 0.0003 \)). Liver weight was significantly correlated with HOMA–IR (\(R = 0.5, P < 1 \times 10^{-5} \)).

Surprisingly, WKY rat liver weights (Figure 1) and liver enzymes (Figure 2) did not change with diet, even though fatty liver was present.

In conclusion, the disease model was associated with abnormal enlargement of liver tissue and increased levels of ALT and AP, even under basal conditions; after exposure to HFD the SHRs developed NAFLD with low degree of liver inflammation.

Analysis of liver expression of Hif1α in the disease model in comparison with the control strain

In a previous human study of NAFLD associated with the metabolic syndrome, we demonstrated that hypoxia-related genes were highly up-regulated in the liver tissue [6]. Evidence from animal studies also supports this finding [22,23].

In the present study, we hypothesized that CVD is associated with liver up-regulation of Hif1α; thus we explored the abundance of Hif1a mRNA in the liver tissue of SHRs and the control strain. We also aimed to investigate the hypothesis that elevated ALT levels observed in the SHR strain may be associated with overexpression of hepatic Hif1a. The rationale of this assumption is that, in many disease states, hypoxia and inflammation occur co-incidently [24]. Interestingly, we observed that Hif1a mRNA was significantly up-regulated in the liver of SHRs as a group in comparison with the control WKY strain (Figure 3), irrespective of diet. In addition, exposure to the HFD was associated with a significant increase of the liver abundance of Hif1a mRNA in SHRs but not in the control strain (Figure 3).

Western blot analysis showed that the level of protein, in parallel with the liver Hif1a mRNA expression, was also significantly higher in the livers of SHRs (Figure 3).

Remarkably, global serum levels of ALT was correlated significantly with liver abundance of Hif1a mRNA (\(R = 0.50, P < 0.006 \)). In conclusion, the disease model was associated with up-regulation of liver Hif1α expression.

To test the possibility that Hif1α-mediated liver damage is a consequence of systemic pathophysiological changes associated with CVD, we measured the local expression of Hif1a mRNA in another tissue, namely VAT (visceral adipose tissue). We chose VAT because previous evidence has shown that hypoperfusion and hypoxia in VAT was associated with metabolic syndrome phenotypes and inflammation [25]. Interestingly, CVD was not associated with local up-regulation of Hif1a mRNA in VAT, as there were no differences in
its abundance between strains [Supplementary Figure S2 at http://www.clinsci.org/cs/124/cs1240053add.htm]. Nevertheless, HFD was associated with an increase in visceral fat Hif1α mRNA in the control strain \((P < 0.03; \text{Supplementary Figure S2} \)), probably reflecting an increased inflammatory response, as HFD-fed WKT rats had increased VAT levels of Tnfα (Supplementary Figure S2).

These findings demonstrate that the liver, but not VAT, seems to be a direct target of Hif1α-associated damage.

Analysis of the inflammatory response in the disease model in comparison with the control strain: role of pro-inflammatory cytokines Tnfα and IL-6 (interleukin-6)

Because hypoxia and inflammation are strongly linked, as hypoxia can induce inflammation, and inflamed lesions often become severely hypoxic [26], we decided to explore whether the disease model was associated with liver induction of inflammatory factors, such as Tnfα and IL-6, because these cytokines are involved in the inflammatory response leading to a multiple inflammatory cascades.

As shown in Figure 4, hepatic abundance of Tnfα and IL-6 mRNAs did not differ among groups and neither diet nor rat strain showed significant differences, despite a trend towards higher levels of Tnfα in HFD-fed SHRs. Thus we further explored hepatic protein levels of Tnfα and observed that there was a significant increase induced by diet \((P < 0.0008; \text{Figure 4}) \), mostly observed in SHRs because SHRs fed on the HFD had significantly higher hepatic Tnfα levels in comparison with the control strain; these finding reinforce our observations about HFD in the disease model being associated with higher foci of necroinflammatory activity in the liver histology (Figure 2).

Interventional experiment: liver hypoxia was not reverted by the use of a direct acting splanchnic vasodilator, suggesting that hepatic Hif1α overexpression in the disease model is unrelated to systemic haemodynamic changes

It is well known that the major haemodynamic alteration in hypertension is an increased vascular resistance and vasoconstriction, which affects some vascular beds, particularly the splanchnic vasculature. To address the question of whether hepatic hypoxia is just a consequence of abdominal vasculature vasoconstriction associated with the cardiovascular phenotype, we decided to perform an additional interventional experiment in which we normalized the arterial blood pressure in the SHR strain by hydralazine, which does not appear to produce uniform vasodilation in all organs, but is a splanchnic vasodilator [27], directly dilating arteriolar smooth muscle of the liver [28]. Interestingly, there was no significant difference in the liver abundance of Hif1α and SirT1 mRNA between treated and untreated SHRs, nor was there any significant difference in ALT and AP levels (Supplementary Figure S1).

Analysis of putative factors associated with the liver induction of Hif1α: the role of angiogenic stimulation and modulation of metabolic response

The results of our previous experiment suggest that Hif1α overexpression in the liver of the SHR strain was not associated with splanchnic vasoconstriction; thus we investigated whether hypoxia occurs in the disease model as an adaptation for angiogenic
High-fat-diet-induced liver damage and cardiovascular disease

Figure 4 Analysis of the inflammatory response and angiogenic stimulation in the disease model (SHR) and the control strain (WKY) according to diet

Upper panel, analysis of the inflammatory response in the disease model in comparison with the control strain. Liver expression of Tnfα and Il-6 mRNAs, and liver Tnfα protein levels were measured in the disease model in comparison with the control strain. Lower panel, analysis of the angiogenic stimulation in the disease model in comparison with the control strain. Liver expression of Vegf mRNA and Vegf protein levels were measured in the disease model in comparison with the control strain. Values are the means ± S.E.M. from SHRs (n=13) and WKY rats (n=14) randomly divided into two experimental groups: SCD (SHR n=7 and WKY n=7) and ad libitum access to the HFD (SHR n=6 and WKY n=7) for 10 weeks. *P value represents the pairwise mean differences evaluated using the non-parametric Mann–Whitney test. NS, not significant.

It is known that Hif1α binds to the promoter region of Vegf and thereby increases its expression under hypoxic conditions. Thus we evaluated Vegf mRNA and Vegf protein levels in the liver tissue of both strains. Although liver abundance of Vegf mRNA was not significantly associated with diet or rat strain, hepatic protein levels of Vegf were significantly up-regulated in HFD-fed rats (Figure 4). As shown before, HFD strongly modulates liver Hif1α expression and tissue inflammatory response, thus we investigated whether hepatic Vegf expression in the disease model was altered without a metabolic insult. For this purpose, hepatic Vegf levels were analysed among rats fed on the SCD. Interestingly, the disease model was significantly associated with liver Vegf overexpression under basal conditions (P < 0.025; Figure 4), suggesting that the presence of CVD is associated with a hypoxic condition in the liver tissue.

In addition, physiological and pathological activation of Hif1α involves changes in the expression of genes that modulate metabolic control and energy metabolism [29]. Recent evidence has revealed a crucial cross-stalk between Hif1α and Sirt1, a gene encoding a deacetylase [30]. Hence we speculated that Sirt1 may also dysregulated in the liver of this CVD model. Indeed, we observed significantly higher levels of hepatic Sirt1 mRNA in the SHR strain in comparison with the control WKY rats (Figure 5), regardless of the exposure to long-term HFD feeding.

We evaluated further whether the altered pattern of liver gene expression described might explain the major phenotypic change observed in the disease model, such as liver enlargement. Unexpectedly, we observed a positive and significant relationship between liver Hif1α mRNA abundance and liver weight (Spearman Rank order correlation R = 0.50, P < 0.01)). In addition, we observed a positive and significant relationship between liver weight and liver mRNA expression of Sirt1 (Spearman Rank order correlation R = 0.62, P < 0.0005). Liver expression of Sirt1 and of Hif1α mRNA were also highly correlated (R = 0.71; P < 0.00002).

We then investigated whether the altered pattern of liver enzymes in the SHR strain was associated with the dysregulated pattern of liver Sirt1 mRNA expression. We observed that serum levels of ALT (R = 0.60, P < 0.002) and AP (R = 0.50, P < 0.004) were correlated significantly with the liver abundance of Sirt1 mRNA.

Glucose-related metabolism in the disease model in comparison with the control strain

Induction and stabilization of Hif1α is primarily, but not limited to, tissue hypoxia, as a growing number of factors can activate Hif1α even under non-hypoxic conditions, such as glucose and its metabolites [31]. To test whether intracellular metabolic signals are related to the observed phenotypic changes in the SHR strain, we first measured intrahepatic levels of glucose in all experimental groups. Remarkably, hepatic glucose levels were significantly decreased in the
A. L. Burgueño and others

Figure 5 Liver expression analysis of Sirt1, Ppara, Pparg and Nr1d1 mRNAs evaluated by quantitative RT-PCR in each experimental group

Values are means ± S.E.M. from SHRs (n = 13) and WKY rats (n = 14) randomly divided into two experimental groups: SCD (SHR n = 7 and WKY n = 7) and ad libitum access to the HFD (SHR n = 6 and WKY n = 7) for 10 weeks. In each sample, the gene expression was normalized to the expression of Tbp. Statistical significance for SHR versus (vs) WKY represents the comparison between the strains independent of diet by two-way ANOVA. NS, not significant.

SHR strain, regardless of HFD (Supplementary Figure S3 at http://www.clinsci.org/cs/124/cs1240053add.htm]). In addition, hepatic glucose levels inversely correlated with either phenotypic characteristics, such as liver weight (R = −0.43, P < 0.02), ALT levels (R = −0.40, P < 0.04), AP levels (R = −0.40, P < 0.04) or liver transcripts such as Sirt1 mRNA (R = −0.4, P < 0.04).

Accordingly, we investigated whether gluconeogenesis was deregulated in the liver tissue in the disease model. Thus we evaluated the liver transcriptional profile of genes highly involved in gluconeogenesis, such as Hnf4a [gene encoding Hnf4α (hepatocyte nuclear factor 4α)], Pepck (gene encoding phosphoenolpyruvate carboxykinase 1) and Pgc1a [gene encoding Ppar(peroxisome-proliferator-activated receptor)γ co-activator 1α]. We observed that hepatic levels of Hnf4a were up-regulated in the disease model regardless of long-term HFD feeding (Supplementary Figure S3), suggesting the inefficiency of insulin to suppress hepatic glucose production, a pathological state associated with hepatic IR. No significant changes were observed in the liver expression of Pepck and Pgc1a mRNAs, even though there was a trend to be higher in both strains after exposure to the HFD (Supplementary Figure S3).

Finally, we measured the amount of hepatocellular glycogen by PAS quantification, and observed that the SHR strain had lower liver glycogen levels, regardless of HFD feeding (P < 0.00001; Supplementary Figure S3).

DISCUSSION

In the present study, we addressed the hypothesis that CVD is associated with some degree of liver damage predisposing the organ to develop a more severe form of NAFLD after exposure to a nutritional insult such as long-term HFD feeding (Figure 5). The transcriptional regulatory network integrated by the nuclear receptor super family co-ordinates not only metabolic homeostasis, but also cardiovascular physiology, blood pressure and circadian rhythm. Because the expression of Nr1d1 [nuclear receptor subfamily 1, group D, member 1, also known as thyroid hormone receptor, α like] is tightly involved in the regulation of circadian rhythm, and variations in the circadian rhythm strongly influence blood pressure and cardiovascular physiology [33], we explored whether the transcript level of liver Nr1d1 mRNA was altered in the SHR strain. Interestingly, we observed significantly higher levels of Nr1d1 mRNA in the liver of SHRs in comparison with WKY rats, regardless of the exposure to a nutritional insult such as long-term HFD feeding (Figure 5).

In summary, the disease model is associated with dysregulated patterns of liver gene transcription of metabolic targets.
to a nutritional insult such as HFD. Our main hypothesis was centered on the potential role of the transcription factor Hif1α as the link between liver injury and CVD. Thus, in this study we developed HFD-induced NAFLD in a rat model of essential hypertension, which has been extensively used to study CVD [34].

Surprisingly, we found that the SHR strain showed hepatomegaly and increased ALT levels compared with its control WKY, even in the absence of fatty liver and irrespective of the HFD. Liver weight in the SHR strain was significantly associated with plasma AP levels and HOMA–IR. SHRs fed with the HFD developed a model of metabolic syndrome-associated NAFLD with some degree of histological liver inflammation. By contrast, HFD intake in the control WKY strain resulted in a model of simple steatosis without liver inflammation and no change in either liver weight or enzymes in spite of a significant impact on serum leptin levels, body weight and visceral fat deposition.

Furthermore, the disease model-fed HFD was associated with increased hepatic levels of inflammatory cytokines, such as Tnfr1, supporting the morphological findings about the SHR strain developing a more aggressive histological liver disease after exposure to a nutritional insult.

A remarkable finding of our present study is the observation that the disease model is associated with increased liver Hif1α protein and Hif1α mRNA expression. Reinforcing this finding, we observed that the SHR strain showed significantly higher Vegf levels, irrespective of HFD.

Consequently, we may assume that Hif1α is responsible for the enhanced susceptibility to liver injury in the disease model further aggravated after long-term HFD exposure.

In addition, we found that SHRs had increased levels of the liver Sirt1 transcript. Surprisingly, liver weight was significantly associated with the liver transcript level of Sirt1 and Hif1α, the levels of both mRNAs being highly correlated. These findings are biologically plausible, because recent evidence has shown a close Sirt1–Hif1α interaction [30]. This pattern of gene transcription was not replicated in VAT, suggesting that up-regulation of the Hif1α transcript was restricted to the liver.

Interestingly, although we cannot completely rule out the possibility that increased levels of liver Hif1α were directly related to hepatic hypoxia, our results using a direct vasodilator suggest that the splanchnic vasoconstriction associated with the systemic cardiovascular phenotype might not be the main cause. Thus, we wondered if some other local events might explain the abnormal phenotypic characteristics observed in the SHR strain, and we found that liver weight, ALT and AP levels, and Sirt1 mRNA were significantly and inversely correlated with glucose levels in the liver tissue. These findings suggest that either the CVD phenotype causes high metabolic demands and elevated rates of hepatocyte glucose consumption, or hepatocytes abnormally regulate the cellular glucose levels due to the IR state. Our findings about up-regulation of Hnf4α and depleted glycogen stores in the disease model strongly suggest that SHRs have abnormalities in liver glucose metabolism that might reflect that the CV phenotype is associated with polygenic modulation at the hepatic level that significantly impact on systemic glucose metabolism as increased gluconeogenesis is the predominant mechanism responsible for this increased glucose output after glycogen depletion. Moreover, adaptation to hypoxia is critically dependent on the reprogramming of glucose metabolism.

We evaluated further the liver transcriptional profile of highly metabolic genes and observed that SHRs significantly overexpressed Ppara and Pparg transcripts in comparison with the control strain, regardless of the exposure to HFD. It is well known that metabolic energetic demands directly impact on the regulation of body size [35]. In this study, we observed that the expression of Ppara and Pparg, two genes involved in the control of metabolic demands, was significantly up-regulated in the liver of SHRs. In fact, Ppara is highly expressed in tissues with high rates of fatty acid catabolism [36] and serves as a metabolic stress response factor by increasing the expression of enzymes involved in fatty acid utilization pathways, not only in response to normal physiological conditions but also in disease states [37]. Actually, evidence from animal models and human studies of patients with IR shows an abnormal activation of Ppara in the heart to compensate metabolic demands [38,39].

Furthermore, previous evidence has shown that SHRs overexpress the transcript of Pparg in aorta and mesenteric arteries [40], and this change has been attributed to pathophysiological adaptations to arterial hypertension. Hence, we might speculate that the observed changes in the transcription levels of the Ppars are pathophysiological adaptations to compensate for the metabolic needs associated with this disease model.

The liver of SHRs also showed significantly higher levels of Nr1d1 in comparison with the control WKY strain. Although the meaning of this finding remains to be elucidated, it is reasonable to speculate that the CVD phenotype is associated with a dysregulation of the hepatic clock machinery, as Nr1d1 is an integral part of the peripheral clock regulating metabolic pathways in concert with nuclear receptors [41]. Supporting our observations is the biological evidence showing that the up-regulated nuclear receptor transcripts observed in our study are highly related to each other [33]. In addition, a recent published study has reported that dysregulation of the cardiovascular diurnal rhythm in SHRs is associated with altered patterns of liver expression of core clock genes, including Nr1d1 [42].

In conclusion, the results of the present study show that the liver seems to be a target for cardiovascular organ damage and CVD may predispose to an increased susceptibility of the liver to undergo pathological changes, including liver inflammation after exposure to a nutritional insult. The behaviour of liver transcripts in the disease model might suggest a singular programming of the liver metabolism associated with pathological stress such as CVD. More importantly, up-regulation of hepatic Hif1α might be the link between CVD and liver injury.

Alternatively, it is worth noting that the hypothesis about fatty liver worsening CVD might also be valid, as HFD-fed rats showed a tendency to have higher levels of SBP, despite the fact that similar increments of serum triacylglycerols were observed in both strains (Figure 1). Nevertheless, more experimental data are needed to confirm whether the altered hepatic metabolism observed in the disease model is potentially able to worsening the cardiac or vascular function beyond traditional cardiovascular risk factors. In this regard, the evidence from human studies shed
light on this matter, as NAFLD was associated with abnormalities in left ventricular morphology and diastolic dysfunction [43–46], and also with carotid atherosclerosis [4,47].

Finally, in the analysis of the behaviour of the liver transcripts in the SHR strain altogether, a surprising pattern emerges, which is that CVD is associated with a shift of liver metabolism towards a stress metabolic response by activating transcriptional programmes similar to caloric restriction and fasting. Thus, not surprisingly, SHRs had increased levels of Sirt1 mRNA, a stress-activated protein deacetylase that regulates different cell survival pathways, including inflammation and resistance to hypoxic and heat stress [48,49], and Ppara mRNA, which during fasting or in T2D contributes to increased hepatic glucose output [50]. Reinforcing this hypothesis, recent findings have shown that Ppara is located upstream from Sirt1 and has a role in regulating Sirt1 expression in fasting-induced anti-aging pathways [51]. Furthermore, the liver of SHRs showed partially depleted glycogen stores and enhanced gluconeogenesis.

CLINICAL PERSPECTIVES

- Liver damage and CVD are clinically related and often co-existing entities, but the mechanisms behind this association are still unclear. We postulated that hypoxia might play a pathophysiological role linking CVD to liver injury.
- In the present study, we observed that SHRs with genetic CVD have hepatomegaly, increased ALT levels and an up-regulation of liver Hif1α under baseline conditions. When rats were fed on an HFD, they developed fatty liver with some degree of inflammation, had increased hepatic levels of Tnfr and a more pronounced increase in Hif1α, which was associated with angiogenic stimulation and a shift in liver metabolism towards a stress metabolic response.
- The liver appears to be a target for organ damage in CVD, which may increase its susceptibility to undergo pathological changes, including inflammation, after exposure to a nutritional insult. A systematic assessment of liver damage may be an important addition to the risk assessment of patients with CVD and related hypoxic conditions, such as obstructive sleep apnoea.

REFERENCES

AUTHOR CONTRIBUTION

Adriana Burgueño and Tomas Gianotti performed the molecular experiments; Adriana Burgueño and Noelia Mansilla took charge of the experimental model. Carlos Pirola and Silvia Sookoian designed the study, analysed and interpreted the data, and prepared and wrote the paper.

FUNDING

This work was supported in part by the Universidad de Buenos Aires [grant number UBACYT CM04] and the Agencia Nacional de Promoción Científica y Tecnológica [grant numbers PICT 2008-1521, 2010-0441].

SUPPLEMENTARY ONLINE DATA

Cardiovascular disease is associated with high-fat-diet-induced liver damage and up-regulation of the hepatic expression of hypoxia-inducible factor 1α in a rat model

Adriana L. BURGUEÑO*, Tomas F. GIANOTTI*, Noelia G. MANSILLA*, Carlos J. PIROLA*† and Silvia SOOKOIAN†

*Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires–National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
†Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires–National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Table S1 Primers used for the mRNA gene expression by RT–PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sirt1</td>
<td>Forward, 5'-CAACACCTCATGATTGGCAC-3'; reverse, 5'-GCTTGGTGCTTCTGAAAGG-3'</td>
</tr>
<tr>
<td>Hif1a</td>
<td>Forward, 5'-CCACGCTCTCTGCTACTC-3'; reverse, 5'-GCTACGGGCTTGTCACCT-3'</td>
</tr>
<tr>
<td>Tnfa</td>
<td>Forward, 5'-AACAGCTGGGCTTGACTC-3'; reverse, 5'-TCAGGAAGATCTGGGCAAAG-3'</td>
</tr>
<tr>
<td>Il-6</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Vegf</td>
<td>Forward, 5'-CCAGATTCTGAAGATCTG-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Pgc1a</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Pepck</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Hnf4a</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Ppara</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Pparg</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Rev-Erbα</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Ppia</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Actb</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Gapdh</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
<tr>
<td>Tbp</td>
<td>Forward, 5'-AACACTGGGAGGAGAGAT-3'; reverse, 5'-CCAGATTCTGAAGATCTG-3'</td>
</tr>
</tbody>
</table>

1These authors contributed equally to this study.

Correspondence: Dr Silvia Sookoian (email sookoian.silvia@lanari.fmed.uba.ar) or Dr Carlos J. Pirola (email pirola.carlos@lanari.fmed.uba.ar)
Figure S1 Interventional experiment: evaluation of the effect of the direct acting splanchnic vasodilator hydralazine on the hepatic expression of Hif1α and Sirt1 mRNA and liver related-enzymes
Values are the mean ± S.D. for SHRs treated with hydralazine (n = 6) and untreated SHRs (n = 6). In each sample, the gene expression was normalized to the expression of Tbp. NS, not significant.

Figure S2 Analysis of VAT expression of HIF1α, Tnfα and Il-6 mRNAs by quantitative RT-PCR in each experimental group
Values are the means ± S.E.M. from SHRs (n = 13) and WKY rats (n = 14) randomly divided into two experimental groups: SCD (SHR n = 7 and WKY n = 7) and ad libitum access to the HFD (SHR n = 6 and WKY n = 7) for 10 weeks. In each sample, the gene expression was normalized to the expression of Gapdh, as this housekeeping gene was the most stable gene in this experiment. Statistical significance for SHR versus (vs) WKY represents the comparison between the strains independent of diet by two-way ANOVA. NS, not significant.
Figure S3 Glucose-related metabolism in the disease model in comparison with the control strain

Upper panels, liver tissue glucose levels in each experimental group and amount of liver glycogen assessed by PAS stain. PAS staining of liver tissue at the end of the experiment of a representative rat from each experimental group. Densitometric analysis of liver glycogen show that SHR rats fed with standard chow diet (A) and HFD (C) have lower levels in comparison with WKY rats fed on the SCD (B) and the HFD (D). Values are means ± S.E.M. for 13 animals in the SHR group and 14 in WKY. Lower panels, liver expression analysis of Hnf4a, Pepck and Pgc1a mRNAs evaluated by quantitative RT–PCR in each experimental group. Values are the means ± S.E.M. from SHRs (n = 13) and WKY rats (n = 14) randomly divided into two experimental groups: SCD (SHR n = 7 and WKY n = 7) and ad libitum access to the HFD (SHR n = 6 and WKY n = 7) for 10 weeks. Statistical significance for SHR vs WKY represents the comparison between the strains independent of diet by two-way ANOVA. NS, not significant.

Received 26 March 2012/9 July 2012; accepted 25 July 2012
Published as Immediate Publication 25 July 2012, doi: 10.1042/CS20120151