Impaired resistance artery function in patients with end-stage renal disease

Natallia LUKSHA*, Leanid LUKSHA†, Juan Jesús CARRERO†, Folke HAMMARQVIST‡, Peter STENVINKEL† and Karolina KUBLICKIENE*

*Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden, †Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden, and ‡Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden

ABSTRACT

We investigated an effect of uraemia on structural and functional features of human resistance vasculature. Arteries (≈ 200 μm) isolated from subcutaneous fat biopsies obtained from 35 ESRD (end-stage renal disease) patients starting peritoneal dialysis and 30 matched controls were studied using isolated small artery bioassays. Flow-mediated dilatation was attenuated in ESRD patients compared with controls. NO (nitric oxide) contribution to flow was lacking in ESRD patients, but present in the controls. ADMA (asymmetrical dimethyl L-arginine) levels were higher in the ESRD group compared with the control group. Dilatation in response to acetylcholine was reduced in ESRD patients compared with controls, but response to NO donor was similar. Expression of nitrotyrosine and heat shock proteins 70 and 27, but not 90, was increased in arteries from ESRD patients compared with controls. Arterial remodelling was absent in ESRD patients. There was no difference between the groups in myogenic tone, vascular reactivity or sensitivity to several vasoconstrictors. Arterial distensibility, reflecting passive properties of the vascular wall, was reduced in ESRD patients compared with controls. Exclusion of ESRD patients with diabetes and/or cardiovascular disease from analyses had no influence on the main findings. Thus we propose that uraemia has a strong impact on endothelial function and passive properties of the arterial wall of human peripheral resistance vasculature. The reduced contribution of NO to flow stimulus via enhanced nitrosative stress and higher plasma concentrations of ADMA may suggest potential mechanisms behind endothelial dysfunction in the resistance peripheral circulation in ESRD.

INTRODUCTION

Despite the rapid progress in dialysis treatment, ESRD (end-stage renal disease) patients still die at a markedly accelerated rate, principally from CVD (cardiovascular disease) and infectious complications [1,2]. Multiple mechanisms mediate the elevated risk for cardiovascular events in ESRD, which are complex and involve changes to the whole cardiovascular system. Endothelial dysfunction is a common phenomenon in ESRD, and infectious complications [1,2]. Multiple mechanisms mediate the elevated risk for cardiovascular events in ESRD, which are complex and involve changes to the whole cardiovascular system. Endothelial disease and passive properties of the arterial wall of human peripheral resistance vasculature. The reduced contribution of NO to flow stimulus via enhanced nitrosative stress and higher plasma concentrations of ADMA may suggest potential mechanisms behind endothelial dysfunction in the resistance peripheral circulation in ESRD.

Key words: cardiovascular disease, diabetes, end-stage renal disease, endothelium, flow-mediated dilatation, nitric oxide, resistance artery.

Abbreviations: ACh, acetylcholine; AngII, angiotensin II; ADMA, asymmetrical dimethyl L-arginine; CSA, cross-sectional area; CVD, cardiovascular disease; ESRD, end-stage renal disease; ET-1, endothelin; HSP, heat-shock protein; 1-NAME, Nω-nitro-1-arginine-methyl ester; NE, noradrenaline; NOS, NO synthase; eNOS, endothelial NOS; PE, phenylephrine; PSS, physiological salt solution; SNP, sodium nitroprusside.

1 These authors contributed equally to the study.

Correspondence: Dr Karolina Kublickiene (email karolina.kublickiene@ki.se).
which constitutes an obligatory prodromal phase in cardiovascular complications [3,4]. However, current evidence for endothelial dysfunction in renal disease patients mainly relies on measurements of circulating biomarkers [2] and in vivo assessment of endothelial function in larger vessels [5,6]. In addition, studies on vascular structure in ESRD patients have mainly concentrated on larger- and medium-size arteries [7,8]. This leaves unaddressed the issue of whether and/or to what extent functional and structural abnormalities may occur concurrently in the resistance circulation. Resistance vessels generally refer to small arteries with diameters ranging from 100 to 300 μm, which are directly involved in the control of blood flow to target organs and peripheral resistance. Abnormalities in this circulation will directly contribute to the development of hypertension, which is common in ESRD patients.

Current evidence that renal diseases affect endothelial function of resistance arteries has been derived mainly from animal studies [9,10]. Only Morris et al. [11] reported a reduced agonist-induced endothelium-dependent dilatation in small arteries isolated from patients with chronic renal failure. The technique of venous occlusion plethysmography has also been used [12,13], suggesting an impairment of the NO (nitric oxide) component in the abnormal dilatation in response to ACh (acetylcholine) in the forearm circulation [14], reflecting the combined responses not only of the resistance vasculature, but also of conduit arteries and venous circulation [15]. To date, however, in ESRD patients, there has been no study to directly assess resistance artery response to a stimulus of flow, which is recognized as the most important physiological regulator of endothelial function and NO release. Furthermore, there has been no study that combines assessment of several parameters that confer resistance artery maintenance in ESRD.

In the present study, we hypothesized that ESRD patients will exhibit several abnormalities at the level of resistance circulation via altered dilatory and constrictor responses, as well as via occurrence of structural changes. The impaired endothelial function will be conferred by changes in NO bioavailability. All these abnormalities will contribute to an increased peripheral resistance in patients with ESRD.

We tested this hypothesis by investigating isolated, pressurized subcutaneous resistance arteries from ESRD patients and healthy controls under conditions representative of an in vivo physiological performance. Responses to physical forces created by intraluminal flow and pressure as the most relevant physiological stimulators for the resistance artery tone were investigated. Furthermore, passive properties of the vascular wall (distensibility) remodelling process, as well as the contribution of NO to flow responses, were studied. Wire myography technique was implemented to test vascular reactivity/sensitivity to a number of pharmacological vasoconstrictor agonists and the role of NO in these responses was also assessed. Finally, in these vessels, we analysed by immunohistochemistry the expression of HSPs (heat-shock proteins) 27, 70 and 90, which, it has been suggested, reflect endothelial stress [16–18], and expression of nitrotyrosine [19] to link endothelial abnormalities to a pro-oxidative phenotype. We also measured the endogenous inhibitor of NOS (NO synthase), ADMA (asymmetrical dimethyl l-arginine), that has been introduced as an additional cardiovascular risk factor in ESRD [20].

MATERIALS AND METHODS

Participants

A subcutaneous fat biopsy was obtained from 35 ESRD patients (25 males; median age 58 years, range 22–79 years) at the time of peritoneal dialysis catheter insertion. In order to establish homogeneity, only patients starting dialysis treatment de novo were included. Exclusion criteria were clinical signs of acute infection, active vasculitis or liver disease at the time of evaluation. Control tissue was obtained from 30 age- and gender-matched healthy volunteers (23 males; median age 54 years, range 29–74 years) without documented renal, cardiovascular, mental or diabetic disease, who underwent hernia repair or laparoscopic cholecystectomy. All subjects gave informed consent, and the ethics committee at Karolinska University Hospital, Stockholm, Sweden, approved the protocol.

Baseline laboratory and clinical assessments

Clinical history of CVD or diabetes was obtained from medical records. CVD was defined as the presence of ischaemic cardiac disease, peripheral vascular disease and/or cerebrovascular disease. Glomerular filtration rate was estimated by the mean of creatinine and urea clearances in ESRD, whereas cystatin-C was used to estimate glomerular filtration rate in controls. Fasting venous blood samples were taken for generation of plasma and serum and stored at −70°C pending further analyses. Serum interleukin-6 was measured on an Immulite® analyser (Siemens Medical Solution Diagnostic). Circulating ADMA was assessed in serum using commercial ELISA assays (DLD Diagnostika). Serum concentrations of albumin (by the Bromocresol Purple method), creatinine, blood lipids and high-sensitivity C-reactive protein were measured by routine procedures at the Department of Clinical Chemistry at Karolinska University Hospital–Huddinge.

At the time of surgery, a subcutaneous fat biopsy (≈ 2 × 1.5 × 1.5 cm) was removed from the anterior abdominal wall and immediately placed into cold PSS (physiological salt solution). Arteries with an internal diameter of ≈ 200 μm were dissected. Depending on the
number of arterial segments obtained from the fat biopsy specimen, one or several experiments (flow-mediated dilatation, agonist-induced responses, pressure-induced tonus and distensibility index) were performed.

Pressure myography

The arterial segments were oriented to mimic the direction of flow *in vivo* and mounted between two glass microcanulae in a pressure myograph chamber (Living Systems Instrumentation Inc.). Intraluminal pressure (60 mmHg) was maintained by a servo-controlled pump. The dimensions of the cannulated artery (internal diameter and wall thickness) were continuously monitored via a video dimension analyser. The organ bath was superfused with ≈ 37°C PSS gassed with 5% CO2 in O2. Each artery was equilibrated for 60 min. The viability tests were carried out by examining the responses to NE (noradrenaline; norepinephrine), 1 μmol/l, and endothelial function was confirmed by relaxation in response to ACh (1 μmol/l).

Assessment of vascular function:

flow-mediated dilatation

Arteries from 27 ESRD patients and 22 controls were used to investigate flow-mediated dilatation. After the equilibration period, the intraluminal pressure was gradually increased from 60 to 80 mmHg for arteries with an internal diameter >200 μm, and the internal diameter was recorded after 20 min. In contrast, for arteries with an internal diameter <200 μm, intraluminal pressure was permanently kept at 60 mmHg. A flow response curve to increasing intraluminal flow by stepwise increase from 0 to 180 μl/min every 3 min was performed on the preconstricted artery to ≈ 50% of the initial diameter. In a separate experimental setup including arteries from ESRD patients (n = 9) and controls (n = 9), flow response curves were obtained before and after incubation with NOS inhibitor, l-NAME (Nω-nitro-l-arginine-methyl ester) (300 μmol/l, 30 min).

Agonist-induced responses

Endothelium-dependent response to ACh was tested in 13 ESRD patients and nine controls, whereas endothelium-independent dilatation in response to SNP (sodium nitroprusside) was performed in 12 ESRD patients and 10 controls. Equilibrated arteries were superfused at 60 mmHg with NE (1 μmol/l) for 20 min in order to induce a stable constriction. ACh (3 nM–1 μmol/l) or SNP (0.1–0.1 mmol/l) were added to PSS containing NE, and concentration–response curves were assessed. Each concentration of the agonist was extraluminally perfused for 3 min, while the changes in the diameter were constantly recorded.

Pressure-induced myogenic tone

The response to changes in pressure was evaluated in arteries from 26 patients with ESRD and 24 controls. After a 20-min artery equilibration at 20 mmHg, intraluminal pressure was gradually increased up to 120 mmHg. Internal artery diameter was recorded after each pressure increment, which was maintained for 5–7 min in order to reach a steady state diameter. Thereafter, PSS was replaced with PSS without Ca2+ (Ca2+-free PSS) to determine the passive diameter curve in response to stepwise pressure increase.

Wire myography

The subcutaneous arteries were mounted on a four-chamber Danish Myotechnology M610 wire myograph, as described elsewhere [21]. Cumulative concentration–response curves were constructed for PE (phenylephrine; selective agonist of α1-adrenergic receptors, 10–0.03 mmol/l), NE (non-selective agonist of adrenergic receptors, 10–0.03 mmol/l), AngII (angiotensin II, 0.1–30 nmol/l) or ET-1 (endothelin-1, 0.1–30 nmol/l) before and after incubation with the NOS inhibitor l-NAME (300 μmol/l, 30 min).

Immunohistochemistry

Cryosections (7 μm thick) of subcutaneous arteries were immunostained with antibodies against HSPs 90, 70, 27 and nitrotyrosine. Antibody concentrations were 10 μg/ml for anti-HSP90, 0.66 μg/ml for anti-HSP70, 5 μg/ml for anti-HSP27 and 20 μg/ml for anti-nitrotyrosine. Negative controls with 0.1% Tween in 3 % PBS and in PBS without primary antibodies were used.

Chemicals and solutions

The composition of PSS (mmol/l) was NaCl 119, KCl 4.7, CaCl2 2.5, MgSO4 1.17, NaHCO3 25, KH2PO4 1.18, ethylenediamine-tetraacetic acid 0.026 and glucose 5.5; pH 7.4. Relaxing solution was Ca2+-free PSS supplemented with papaverine (0.1 mmol/l) and ethylene glycol-bis-(β-aminoethyl ether) tetraacetic acid (1 mmol/l). NE was dissolved directly in PSS, whereas for ACh, PE, AngII, ET-1 and SNP, stock solutions were prepared in distilled water and further dissolved in PSS. All chemicals were obtained from Sigma–Aldrich Sweden AB. Monoclonal mouse antibodies used for HSP27 (ab8600), HSP70 (ab6535), HSP90 (ab1429) and nitrotyrosine (ab7048) and secondary biotinylated polyclonal goat anti-mouse IgG antibody (ab6788) were all obtained from Abcam plc.

Calculations and statistical analysis

Relaxation to flow, ACh and SNP were calculated as a percentage change in internal diameter in response to stimulation, divided by the difference in internal diameter before and after preconstriction. Wall shear stress (τ, dyn/cm2) was calculated using the Hagen–Poiseuille formula: \(\tau = 4 \times \eta \times Q \times 10^9 / \pi r^4 \), where \(\eta \) is the viscosity of the perfusate (poise – dyn s/cm²), \(Q \) is flow rate (μl/s) and \(r \) is artery radius (μm). The factor of 10⁹ in the equation...
is to correct the use of μl/s for flow and μm for artery radius (1 μl = 10⁶ μm³). Viscosity of PSS was assumed as 0.007 poise at 37 °C. CSA (cross-sectional area) was calculated as: CSA = (π/4) × (D² - D₀²), where Dᵢ and D₀ are external and internal diameters, respectively. Wall lumen ratio was defined as: wall thickness/D₀. Pressure-induced myogenic tone was calculated as: myogenic tone (% = 100 × (DᵢCa²⁺-free PSS - DᵢPSS)/DᵢCa²⁺-free PSS, where Dᵢ is the internal diameter of the artery. Distensibility index was calculated as: distensibility index (% = (Dᵢ/D₀) × 100, where Dᵢ is the internal diameter in Ca²⁺-free PSS at different steps of pressure, and D₀ is the internal diameter in Ca²⁺-free PSS at 5 mmHg.

In the Tables and Figures, results are expressed as the mean ± S.E.M., and the mean ± S.D. or median and range, as appropriate. Baseline characteristics of the patients and arteries used were analysed by conventional parametric and non-parametric methods as appropriate. Differences in artery responses between patients and controls were determined by two-way repeated measures ANOVA (analysis of variance). The semiquantitative analysis for immunohistochemistry staining intensity was assessed by the average blind score of three different observers, using a scale between 0 and 3, where 0 was absence of staining and 3 corresponded to maximal intensity. A valid comparison between different images, the threshold levels were maintained similarly. The results were evaluated with Mann–Whitney U test for non-parametric comparisons. All calculations and statistical analyses were performed using STATISTICA (ver. 8.0, StatSoft). All comparisons were considered statistically significant if P < 0.05.

RESULTS

Participants
Baseline clinical and laboratory characteristics of patients in the ESRD group, ESRD subgroup (ESRD patients without CVD and/or diabetes mellitus) and the controls enrolled in the study are shown (Table 1). Age, gender and smoking status were similar between groups. The body mass index was lower in ESRD group and subgroup compared with the controls. Whereas inflammation markers (interleukin-6 and high-sensitivity C-reactive protein) and ADMA were elevated in the ESRD group and subgroup, total cholesterol was significantly lower in the ESRD group compared with the controls, but similar between the ESRD subgroup and the controls. No significant difference in blood pressure was observed between the groups.

Vascular structure
Baseline characteristic of pressurized subcutaneous resistance arteries used in the functional study are summarized (Table 2). The arteries from all groups had similar diameters, wall thickness, wall–lumen ratio and cross-sectional area.

Vascular function
Flow-mediated dilatation was significantly attenuated in the ESRD patients (Figure 1A), and increments of intraluminal flow led to a much steeper rise in wall shear stress values compared with the control group (Figure 1B). Incubation with a NOS inhibitor, l-NAME, did not affect flow-mediated dilatation in arteries from ESRD patients (Figure 2A). In contrast, l-NAME significantly reduced flow-mediated responses in arteries from controls (Figure 2B) to a level comparable with that obtained in arteries from ESRD before NOS inhibition (Figure 2A).

ACh and SNP induced a robust, concentration-dependent dilatation in both ESRD and control arteries. Whereas a significant decrease in endothelium-dependent dilatation in response to ACh was observed in the ESRD group compared with the controls (Figure 3A), the SNP-induced dilatation was similar between the groups (Figure 3B). There was no difference in myogenic tone between the two groups (Figure 4A) or in vascular reactivity or sensitivity to AngII, ET-1 or agonists of adrenergic receptors (Table 3). Moreover, NOS inhibition had no effect on vascular reactivity or sensitivity to the above-mentioned agonists in isolated arteries from either group studied (Table 3). In contrast, arterial distensibility was significantly reduced in ESRD patients in comparison with the controls (Figure 4B).

In order to eliminate the possible interference of comorbidities, ESRD patients without CVD (based on clinical history from medical records) and/or diabetes mellitus were placed in a subgroup and compared with the controls. Briefly, we observed similar results as above (Figure 5). Also, no difference in myogenic tone (e.g. at 120 mmHg 13 ± 3 % in ESRD, n = 14 compared with 12 ± 2 % in controls, n = 24) or SNP response (e.g.% maximum relaxation at 0.1 mmol/l of SNP: 61 ± 7 in ESRD, n = 7 compared with 69 ± 7 in controls, n = 10) was observed between the groups.

HSPs and nitrotyrosine expression in the vascular wall
The intensity of immunohistochemistry staining for HSP27, HSP70, HSP90 and the oxidative stress marker nitrotyrosine within the vascular wall of resistance subcutaneous arteries was compared between ESRD
patients and controls. Both the semiquantitative and computer imaging analysis (Table 4) showed higher expression patterns of HSP27, HSP70 and nitrotyrosine in arteries from the ESRD group compared with controls (Figure 6).

DISCUSSION

To the best of our knowledge, our ex vivo study is the first to extensively characterize changes present in the peripheral resistance vasculature in ESRD patients. Here, we show for the first time that endothelium-dependent dilatation in response to flow-mediated shear stress is impaired in the resistance arteries from patients with ESRD. The obvious absence of NO contribution to flow response in the ESRD group contrasts with data obtained in controls, in which NO played a predominant role. The presence of endothelial dysfunction in the resistance vasculature of the ESRD subjects was further strengthened by a reduced dilatation in response to ACh, but by preserved response to an NO donor. Moreover, vascular distensibility was also impaired in arteries from the ESRD group compared with the controls. The renal failure had, however, no effect on contractile responses to AngII, ET-1, NE and PE or on pressure-induced myogenic tone and remodelling process. Increased expressions of nitrotyrosine and HSPs 70 and 27, but not 90, were observed in artery walls from the ESRD group in comparison with the controls. Elevated plasma levels of ADMA were found in ESRD patients compared with the controls. Exclusion of ESRD patients with

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESRD group (n = 35)</th>
<th>ESRD subgroup (n = 14)</th>
<th>Controls (n = 30)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>58 ± 13</td>
<td>54 ± 17</td>
<td>56 ± 12</td>
<td>NS</td>
</tr>
<tr>
<td>Males (n)</td>
<td>25 (71 %)</td>
<td>8 (57 %)</td>
<td>23 (77 %)</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25 ± 3</td>
<td>24 ± 3</td>
<td>27 ± 4</td>
<td><0.01</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>145 ± 20</td>
<td>139 ± 14</td>
<td>140 ± 16</td>
<td>NS</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>86 ± 9</td>
<td>85 ± 11</td>
<td>86 ± 10</td>
<td>NS</td>
</tr>
<tr>
<td>Biochemical parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>4.6 ± 1.2</td>
<td>5.0 ± 1.1</td>
<td>5.4 ± 1.0</td>
<td><0.05/NS*</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.6 (0.7–5.6)</td>
<td>1.5 (0.8–3.7)</td>
<td>1.3 (0.7–19)</td>
<td>NS</td>
</tr>
<tr>
<td>Serum albumin (g/l)</td>
<td>35 ± 4</td>
<td>35 ± 3</td>
<td>39 ± 3</td>
<td><0.05</td>
</tr>
<tr>
<td>Serum creatinine (μmol/l)</td>
<td>649 (249–1069)</td>
<td>688 (440–1069)</td>
<td>80 (55–105)</td>
<td><0.001</td>
</tr>
<tr>
<td>Haemoglobin (g/l)</td>
<td>111 ± 13</td>
<td>108 ± 17</td>
<td>142 ± 12</td>
<td><0.001</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>4.9 (1.9–16.8)</td>
<td>3.8 (1.9–16.8)</td>
<td>1.4 (0.8–17.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>hsCRP (mg/l)</td>
<td>3.1 (0.4–24.9)</td>
<td>3.2 (0.75–24.9)</td>
<td>1.4 (0.5–8.8)</td>
<td><0.05</td>
</tr>
<tr>
<td>GFR (ml/min)</td>
<td>12 ± 3</td>
<td>11 ± 3</td>
<td>89 ± 5</td>
<td><0.001</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.56 ± 0.1</td>
<td>0.56 ± 0.1</td>
<td>0.49 ± 0.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>2.3 ± 0.2</td>
<td>2.3 ± 0.1</td>
<td>2.3 ± 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Phosphate (mmol/l)</td>
<td>1.8 ± 0.5</td>
<td>1.9 ± 0.7</td>
<td>1.0 ± 0.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Urinary albumin (mg/24 h)</td>
<td>804 (6–5985)</td>
<td>401 (6–5985)</td>
<td>Not determined</td>
<td></td>
</tr>
<tr>
<td>Co-morbidities (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>10 (29 %)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td>14 (40 %)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Treatment (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>32 (91 %)</td>
<td>13 (93 %)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>β-Blockers</td>
<td>21 (60 %)</td>
<td>8 (60 %)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ca blockers</td>
<td>18 (51 %)</td>
<td>4 (29 %)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>28 (80 %)</td>
<td>12 (86 %)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>14 (40 %)</td>
<td>2 (14 %)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Erythropoietin</td>
<td>29 (83 %)</td>
<td>13 (93 %)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Baseline characteristics of pressurized resistance arteries from ESRD patients with CVD and/or diabetes (ESRD group), ESRD patients without CVD and/or diabetes (ESRD subgroup) and matched controls

Values are means ± S.E.M. No significant difference was observed between the groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ESRD group (n = 27)</th>
<th>ESRD subgroup (n = 14)</th>
<th>Controls (n = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal diameter (μm)</td>
<td>178 ± 8</td>
<td>175 ± 12</td>
<td>177 ± 10</td>
</tr>
<tr>
<td>Passive diameter in Ca²⁺-free PSS (μm)</td>
<td>186 ± 8</td>
<td>186 ± 12</td>
<td>186 ± 11</td>
</tr>
<tr>
<td>Wall thickness (μm)</td>
<td>47 ± 2</td>
<td>44 ± 2</td>
<td>54 ± 2</td>
</tr>
<tr>
<td>Wall/lumen ratio</td>
<td>0.29 ± 0.02</td>
<td>0.12 ± 0.02</td>
<td>0.37 ± 0.04</td>
</tr>
<tr>
<td>CSA (μm²)</td>
<td>14952 ± 1160</td>
<td>14130 ± 1417</td>
<td>17417 ± 1383</td>
</tr>
</tbody>
</table>

Figure 1 Flow-mediated dilatation (A) and wall shear stress (τ) (B) in NE pre-constricted resistance subcutaneous arteries from ESRD patients and controls

The number of participants in the groups is indicated in parentheses. *P < 0.05.

Figure 2 Flow-mediated dilatation in PSS and after incubation with L-NAME in NE pre-constricted resistance subcutaneous arteries from ESRD patients (A) and from controls (B)

The number of participants in the groups is indicated in parentheses. *P < 0.05.

diabetes and/or CVD had no impact on experimental outcomes.

Blunted flow-mediated dilatation and the lack of NO contribution to this response in human peripheral resistance vasculature extend and complement previous reports, but in other vascular beds [6,11–14,24], emphasizing further the general state of endothelial dysfunction and the significant role of impaired NO availability in this high-risk patient group. Our study also suggests potential mechanisms behind small artery dysfunction in ESRD. Thus, the increased expression of nitrotyrosine in arteries from the ESRD group may imply the enhancement of free radical production towards a pro-oxidant environment and NO degradation. The elevated circulating levels of ADMA in ESRD patients would favour decreased NO production.
Figure 3 Concentration–response curves to ACh (A) and SNP (B) in resistance subcutaneous arteries from ESRD patients and controls
The number of participants in the groups is indicated in parentheses. *P < 0.05.

Figure 4 Pressure-induced myogenic tone (A) and distensibility (B) in response to changes of intraluminal pressure in resistance subcutaneous arteries from ESRD patients and controls
The number of participants in the groups is indicated in parentheses. *P < 0.05.

Table 3 Potency of vasoconstrictor agonists and maximum constriction of resistance arteries from ESRD patients and controls
Values are means ± S.E.M. The number of patients in the groups is indicated in parentheses in the Max. response column. ID, internal diameter (μm) of relaxed arteries at a pressure of 100 mmHg; pEC50, negative logarithm of molar concentration of agonist that is required to induce 50% of the maximum response; Max. response, contractile response of arteries to maximally used concentration of agonists expressed as a percentage of constriction to high K+ (124 mmol/l).

<table>
<thead>
<tr>
<th>Agonist</th>
<th>ESRD group</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID</td>
<td>pEC50</td>
</tr>
<tr>
<td>NE</td>
<td>215 ± 13</td>
<td>6.7 ± 0.2</td>
</tr>
<tr>
<td>NE+L-NAME</td>
<td>195 ± 17</td>
<td>6.8 ± 0.4</td>
</tr>
<tr>
<td>PE</td>
<td>216 ± 15</td>
<td>5.7 ± 0.1</td>
</tr>
<tr>
<td>PE+L-NAME</td>
<td>184 ± 18</td>
<td>5.5 ± 0.3</td>
</tr>
<tr>
<td>AngII</td>
<td>226 ± 18</td>
<td>8.7 ± 0.2</td>
</tr>
<tr>
<td>AngII+L-NAME</td>
<td>178 ± 20</td>
<td>8.2 ± 0.5</td>
</tr>
<tr>
<td>ET-1</td>
<td>197 ± 16</td>
<td>8.7 ± 0.2</td>
</tr>
<tr>
<td>ET-1+L-NAME</td>
<td>187 ± 14</td>
<td>8.7 ± 0.1</td>
</tr>
</tbody>
</table>

© The Authors Journal compilation © 2011 Biochemical Society
Similar responses to a number of pharmacological agonists tested, as well as similar pressure-induced myogenic tone between arteries from ESRD and control groups, argue against altered vascular smooth muscle function in the resistance arteries from patients with ESRD. However, alterations in the passive properties of the arterial wall (reduced distensibility) strengthen a link between ESRD and increased vascular stiffness [25,26]. Since exclusion of patients with diabetes and/or CVD had no impact on experimental outcomes, it is likely that uraemia itself, and not existing co-morbidities, is the main cause of endothelial dysfunction and altered passive properties of the resistance vasculature. Thus, our findings may contribute to the elucidation of mechanistic links between uraemia and vascular abnormalities.

Wall shear stress is the main determinant of flow-mediated dilatation, which, in small arteries, is an important physiological regulator of tissue perfusion [27].

![Figure 5](image)

Figure 5 Flow-mediated dilatation (A), wall shear stress (τ) (B), concentration–response curves to ACh (C) and distensibility (D) in resistance subcutaneous arteries from ESRD patients without a clinical history of diabetes and/or CVD compared with controls.

The number of participants in the groups is indicated in parentheses. *$P < 0.05$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>Semi-quantitative assessment of staining (a.u.)</th>
<th>P value</th>
<th>Percentage of staining (i.a.s.)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSP90</td>
<td>Controls</td>
<td>0.9 (0.3–1.7)*</td>
<td>NS</td>
<td>0.6 (0–21)*</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>ESRD</td>
<td>1.1 (0.5–2.2)$</td>
<td>$</td>
<td></td>
<td>2.5 (0–30)$</td>
</tr>
<tr>
<td>HSP70</td>
<td>Controls</td>
<td>1.2 (0.2–2.9)*</td>
<td>0.02</td>
<td>1.8 (0–5)*</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>ESRD</td>
<td>2.2 (1.7–3.0)$</td>
<td>$</td>
<td></td>
<td>6.9 (1–38)$</td>
</tr>
<tr>
<td>HSP27</td>
<td>Controls</td>
<td>1.2 (0.7–2.0)*</td>
<td>0.04</td>
<td>0.1 (0–16)*</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>ESRD</td>
<td>2.2 (0.9–3.0)$</td>
<td>$</td>
<td></td>
<td>15.6 (0–54)$</td>
</tr>
<tr>
<td>Nitrotyrosine</td>
<td>Controls</td>
<td>0.7 (0.0–2.0)$</td>
<td>$</td>
<td>0.01</td>
<td>0.6 (0–9)$</td>
</tr>
<tr>
<td></td>
<td>ESRD</td>
<td>1.2 (0.5–2.5)$</td>
<td>$</td>
<td></td>
<td>2.3 (0–30)$</td>
</tr>
</tbody>
</table>

*Values are medians (range). *$n = 5$, †$n = 12$, ‡$n = 13$, §$n = 6$. NS, not significant; a.u., arbitrary unit; i.a.s., quantified by image analysis software.
In our study, we characterized the effects of increases in intraluminal flow on artery diameter by calculating wall shear stress. In control arteries, increases in flow caused only small increases in calculated wall shear stress because there were substantial increases in lumen diameter that prevented further enhancement of shear stress. In other words, there was functional adaptation to the changes in flow rate. By contrast, arteries from ESRD patients showed compromised responses: increments in intraluminal flow caused progressive increases in calculated wall shear stress because the dilator responses were impaired. This suggests that the efficacy of shear stress as a dilator stimulus may be impaired in a uraemic environment.

In the *ex vivo* setup, shear stress values, as a function of changes in flow, are usually assessed at constant fluid viscosity. However, when extrapolating our data to an *in vivo* situation, it should be noted that shear stress is also dependent on blood viscosity, which is directly related to haemoglobin concentration. Therefore abnormalities in flow-mediated responses at the level of resistance arteries may be amplified further *in vivo* by anaemia, which is well known to worsen as kidney disease progresses. Taken together, we postulate that in ESRD, the reduced ability of shear stress to induce relaxation, as presented in our study, along with anaemia-related low blood viscosity present in the *in vivo* situation, may further impede small artery wall ‘sensitivity’ to this physiological stimulus. Indeed, abnormal shear stress values in the brachial artery *in vivo* have been found in ESRD patients, and anaemia correction led to improved flow responses and enhanced arterial wall sensitivity to this mechanical stimulation [6].

The significantly reduced response to flow after NOS inhibition occurred in arteries from controls, further supporting the importance of NO in flow-mediated dilatation of isolated resistance arteries from healthy volunteers [28,29]. In ESRD arteries, however, the contribution of NO to flow responses was lacking. This observation concurs with evidence that so far has only been reported in animal studies [9,10] and is indirectly supported by *in vivo* investigations in ESRD patients [20,30,31].

Considering the complexity of NO deficiency in uraemia [32], we suggest that changes in NO bioavailability merits particular attention. Based on the enhanced pattern of nitrotyrosine staining (marker for peroxynitrite formation) in the resistance artery wall and elevated levels of circulating ADMA (endogenous inhibitor of NO production), our study suggests that decreased bioavailability of NO could serve as a potential mechanism behind impaired flow-mediated dilatation in resistance vasculature of ESRD patients. Our suggestion is further strengthened by *in vivo* studies showing negative relationships between markers of oxidative stress [24], ADMA and flow-mediated dilatation in ESRD subjects [33]. In addition, the similar expression of HSP90 in the vascular wall of ESRD patients and controls argues against NO deficiency via uncoupling of eNOS (endothelial NOS) caused by HSP90 insufficiency [18]. However, limited availability of other cofactors may also contribute to eNOS uncoupling, with a subsequent decrease in NO signalling and an increase in eNOS-derived superoxide generation [34]. Finally, despite the observation of higher expression of HSP70 and HSP27 in the arterial walls of the ESRD group, their contribution to impaired endothelial function is not yet clear and, as such, requires further investigation. However, some evidence suggests that increased expression of HSP 70 and 27 might reflect a compensatory role against endothelial dysfunction [16,17].
Despite the existing debate as to whether myogenic tone abnormalities may serve as a cause or a consequence of elevated blood pressure [35, 36], we proposed that enhanced pressure-dependent myogenic constriction would contribute to the elevated peripheral resistance in ESRD. However, even if a slight tendency existed for enhanced myogenic tone in ESRD patients, our study did not support this. The observed preservation of myogenic tone concurs with the previous animal report on uraemic hypertension [37]. It might be anticipated that treatment for blood pressure control could also normalize the level of myogenic tone. This suggestion is supported by a number of studies on hypertensive animals after antihypertensive treatment [38, 39]. However, we cannot exclude the possibility that increased peripheral resistance in vivo takes place by other means in patients with ESRD. For example, enhanced levels of local and circulating endothelin-derived vasoconstrictors, such as ET-1 [40], AngII [41] or increased sympathetic nerve activity [42], could amplify the myogenic tone via constriction. Conversely, our data on wire-mounted arteries indicated similar constriction in response to ET-1, AngII and agonists of adrenergic receptors, indicating that increased local concentrations of vasoconstrictors, rather than changes in sensitivity of the arterial wall to them, could be involved in ESRD. Our data is in line with a previous report on subcutaneous arteries that showed similar response to vasoconstrictors between controls and chronic intermittent dialysis patients [43], but is in contrast with the study by Morris et al. [11], in which a more sustained constriction at highest concentrations of ET-1 and NE were observed in ESRD. The reasons for the difference between studies are largely unknown, and further studies are warranted.

As the internal diameter, wall thickness, wall–lumen ratio and cross-sectional area did not differ between ESRD patients and controls, our study fails to show vascular remodelling in the resistance subcutaneous arteries from patients with ESRD. Although our observation agrees with one very early report on isolated subcutaneous arteries in advanced human uraemia [43], it opposes the observed vascular remodelling in the microcirculation of the heart [44]. Clearly, further studies are needed to evaluate whether regional differences are operative in this process. The lack of remodelling in ESRD arteries could be attributed to antihypertensive treatment, as several studies have provided direct evidence of a corrective effect of different antihypertensive drugs on structural parameters of resistance arteries [45]. Because the correction of wall structure by antihypertensive treatments has been shown to be accompanied by normalization of myogenic tone [39, 46], the simultaneous absence of remodelling and preserved myogenic tone in our ESRD patients seems to be logical.

Since the elastic properties of the vessels in this study were tested ex vivo (without flow and active tone in maximally dilated condition), the decreased distensibility is directly related to the vessel wall composition, which is determined by extracellular matrices, such as collagen and elastin [47]. Although the mechanisms by which this occurs are less well understood, the renal diseases may exert detrimental effects on collagen and elastin functionality, particularly when an increased exposure to glycation and oxidation products is demonstrated [48, 49]. This may lead to the loss of fibre flexibility, altered conformation and elevated susceptibility to enzymatic digestion [50]. The decreased distensibility of the resistance vasculature and the proposed modifications of the passive elements of the vascular wall may also contribute to vascular complications upstream and serve as a possible common pathway to explain the cardiovascular risk linked to ESRD [7].

The present study should be considered with the following caveats: although we have studied a relatively homogenous group of incident dialysis patients, the findings regarding remodelling and myogenic tone should be considered with caution, due to the range of different pharmacological treatments. Since direct vascular effects of antihypertensives could not be ruled out, it should be noted that these drugs may reverse the remodelling process and reduce myogenic tone [51–53]. Moreover, as the presence of CVD was based solely on clinical grounds, the true prevalence of CVD in these patients may have been underestimated. A larger patient cohort would possibly have permitted further associations between biochemical markers and functional and structural findings in isolated resistance arteries that would allow us to gather new insights into possible mechanisms. The future aim would be to extend the investigations in the same cohort, but in other resistance vascular beds, particularly to those of critical importance like coronary and cerebral circulations or to larger elastic and muscular arteries.

In summary, our ex vivo study provides new insights into how renal failure affects human resistance artery function. We show for the first time that uraemia primarily targets endothelial maintenance via impaired response to flow-mediated shear stress and absence of NO contribution to this stimulation, as well as a blunted dilatation in response to an endothelium-dependent agonist. Overall, these findings further highlight the general state of endothelial dysfunction in ESRD. Changes in NO bioavailability via enhanced degradation and/or reduced production may serve as potential mechanisms behind endothelial dysfunction in the peripheral resistance circulation in patients with ESRD. Renal failure also affects passive properties of the vascular wall (reduced distensibility), which strengthens an association between ESRD and increased arterial stiffness. Such changes in the peripheral resistance circulation would be expected to predispose this patient group to increased cardiovascular risk. We therefore propose that the association between hypertension,
cardiovascular diseases, cerebral ischaemic attacks and renal failure is mediated, at least partly, by functional alterations at the level of the microcirculation.

AUTHOR CONTRIBUTION

Natallia Luksha and Leanid Luksha conceived and designed the study, performed the experiments, analysed and interpreted the data, drafted the manuscript, and revised the manuscript for important intellectual content; Juan Jesús Carrero conceived and designed the study, performed the experiments, and revised the manuscript for important intellectual content; Folke Hammarqvist performed the experiments, revised the manuscript for important intellectual content, and provided administrative, technical and material support; Peter Stenvinkel conceived and designed the study, performed the experiments, analysed and interpreted the data, drafted the manuscript, revised the manuscript for important intellectual content; and interpreted the data, drafted the manuscript, and revised the manuscript for important intellectual content, and provided administrative, technical and material support.

ACKNOWLEDGEMENTS

We thank the patients and personnel at Karolinska University Hospital-Huddinge who were involved in the samples collection. Special thanks goes to Annika Moberg and Christina Bäckmark for surgery planning, to KBC (Annika Nilsson, Anki Emmot and Ulrika Jensen) for the sampling protocol and co-ordination, and to John Sandberg, Olof Heimbürger and Enes Efendic for patient recruitment. We also wish to express our appreciation to Anton Paier for technical assistance during immunohistochemical analysis.

FUNDING

This study was supported by the Swedish Society of Medicine, Swedish Heart and Lung Foundation, Loo och Hans Ostermans Foundation, the Swedish Kidney Association and the Karolinska Institute Research Funds. L.L. is partly supported by a postdoctoral grant from AFA Insurance and CLINTEC, Sweden.

REFERENCES

Received 25 May 2010/9 December 2010; accepted 11 January 2011
Published as Immediate Publication 11 January 2011. doi:10.1042/CS20100277