Assessment of orthostatic fluid shifts with strain gauge plethysmography

Roland D. THIJS*, Maaike BRUIJNZEELS*, Adriaan M. KAMPER†, Arjan D. VAN DIJK‡ and J. Gert VAN DIJK*

*Department of Neurology and Clinical Neurophysiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands, †Department of Gerontology and Geriatrics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands, and ‡Department of Medical Physics and Engineering, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands

ABSTRACT

In the present study we evaluated the use of SGP (strain gauge plethysmography) for the assessment of orthostatic fluid shifts during HUT (head-up tilting). Subjects wore a parachute harness fixed to the tilt table to avoid muscle tension in the lower limbs during HUT. Twenty-two healthy subjects (nine women) were tilted for 5 min. Changes in calf volume, as measured by SGP, surface EMG (electromyography), heart rate and blood pressure were measured continuously. Ten subjects underwent a second tilt test during which circulation in one leg was occluded with a pressure cuff at 250 mmHg. During HUT with occlusion, calf volume in the non-occluded leg increased by 1.9 ± 0.3 % (mean ± S.E.M.) and 0.2 ± 0.2 % in the occluded leg (P < 0.001). During HUT without occlusion a significant correlation (r = 0.9) was found between measurements in the left and right leg with a mean difference of 0.03 ± 0.1 %. HUT did not cause significant changes in surface EMG measurements. An unexpected gender effect was observed: calf volume increased significantly more in men than in women. Men were significantly taller, but the haemodynamic response to HUT did not differ between both genders. The gender effect on orthostatic increases in calf volume remained significant after adjustment for heart-to-calf distance. SGP during HUT with a parachute harness is a new promising method to assess orthostatic fluid shifts. The gender differences in orthostatic pooling in the calf may be explained by a higher calf compliance in men together with a greater hydrostatic pressure due to a greater height in men.

INTRODUCTION

Upon standing, approx. 300–1000 ml of blood is pooled to the lower parts of the body [1–4]. Estimates of the amount of venous pooling depend on several factors, including the vessel beds investigated and the duration and type of orthostatic stress. The amount of venous pooling differs markedly between the areas of the body. For example, approx. 80 % of the blood pooled in the legs is contained in the thigh and buttocks [2]. The estimate of the amount of pooling therefore depends on the regions studied. The time course of orthostatic fluid shifts is characterized by a first fast increase due to filling of veins caused by a rise in hydrostatic pressure and a second slow phase due to fluid filtration through capillary walls [5,6]. Thus the duration of standing affects the amount of orthostatic venous pooling due to capillary filtration [7]. Finally, the type of orthostatic stress [LBNP (lower body negative pressure), passive tilting or active standing] affects the amount of fluid shift as muscle tensing reduces venous pooling; a single contraction of the calf muscles may eject 60 % of the blood entered upon standing [8].

Key words: autonomic nervous system, orthostasis, syncope, strain gauge plethysmography, venous compliance, venous pooling.

Abbreviations: BMI, body mass index; CI, confidence interval; EMG, electromyography; HUT, head-up tilting; LBNP, lower body negative pressure; SGP, strain gauge plethysmography.

Correspondence: Dr Roland D. Thijs (email r.d.thijs@lumc.nl).
Venous pooling is crucial to the pathophysiology of orthostatic hypotension in autonomic failure [1,2]. A non-invasive device with continuous measurement of orthostatic fluid shifts could provide more insight into the pathophysiology of autonomic failure. To this end impedance plethysmography has been used, and a significant correlation was found with the estimated loss of plasma volume using the Evans dye method [6]. However, despite the strong correlation, impedance plethysmography systematically underestimated the amount of fluid loss in the capillary filtration phase compared with the Evans dye method. It is unclear which method is more reliable as both methods rely on a number of assumptions [6].

SGP (strain gauge plethysmography) has been used extensively to assess limb blood flow and venous compliance following orthostatic stress [9,10]. However, continuous measurements of orthostatic pooling have not been performed as muscle tensing affects limb volume and thus SGP measurements. A tilt table with a parachute harness can be used to avoid muscle tension upon tilting [11]. This method may therefore allow the assessment of orthostatic fluid shifts with SGP. Therefore in the present study we evaluated the use of SGP for the assessment of the time course of orthostatic fluid shifts during HUT (head-up tilting) with a parachute harness.

MATERIALS AND METHODS

Subjects
Twenty-two healthy volunteers were recruited by means of an advertisement (13 men; mean age, 32 years old; range, 18–56 years old). All nine women used oral contraceptives and were premenopausal. The study protocol was approved by the Leiden University Medical Centre Ethics Review Committee. All participants gave written informed consent. Subjects were excluded if they had a history of recurrent (more than five times) syncope, a known cardiac or neurological disease, or used any medication other than analgesics or oral contraceptives.

Study protocol
The temperature of the room was maintained at 23 ± 1 °C. Subjects lay on a motor-driven tilt table (Dewert tiltable). For this experiment the footboard was removed from the table. Tilting time (from 0° to 60° head-up) was 12 s. While supine, subjects were fitted with a parachute harness fixed to the tilt table to avoid muscle tension in the lower limbs upon tilting. A cushion was placed under the buttocks and a net was attached to the tilt table in order to form a seat. The seat was added to prevent the subject from sliding downwards during HUT. All 22 subjects were tilted with a parachute harness to 60° head-up tilt for 5 min following 5 min of supine rest. In ten subjects (eight men) an additional tilt with a parachute harness was performed for 4 min. In these subjects, the upper thigh in one leg (randomly assigned) was fitted with a pressure cuff (Hokanson EC-10 rapid cuff inflator) to 250 mmHg [12] to prove the absence of volume changes during arterial occlusion. The cuff was inflated 1 min prior to tilting and pressure was released after 3 min of HUT.

Measurements
Both calves were fitted with mercury-in-silastic strain gauges placed 10 cm distally from the tibial tuberosity. The strain gauges were fitted to the measured circumference and connected to a custom-built plethysmograph based on the principles of the Hokanson EC-2 plethysmographs. To avoid direct contact of the strain gauges with the tilt table, the heel was raised with a small cushion. HUT without occlusion was repeated in two subjects on a separate occasion as the strain gauge in one calf moved downwards directly upon HUT causing a negative SGP measurement. The skin surface temperature of both calves was measured 1 min before HUT and after 5 min of HUT with an infrared pistol thermometer (Testo 825-T4). Beat-to-beat finger blood pressure was measured using a finger volume-clamp method (Finometer, Finapres Medical Systems). Heart rate was measured by ECG. The muscle activity of the gastrocnemius muscle and the anterior tibial muscle was measured with surface electrodes. All signals were routed to a computer (sampling rate 120 Hz) for off-line analysis using custom-written software. Self-reported body mass was recorded and body height was measured, including the heart-to-calf distance, to estimate the height of the hydrostatic column.

Data analysis and statistics
Values are presented as means ± S.E.M. or medians (interquartile range). Our primary outcome measure was the change in calf volume after 5 min of tilting. We divided the response to HUT into two phases: the acute phase (0–1 min of HUT), mainly reflecting filling of veins caused by a rise in hydrostatic pressure, and the prolonged phase (1–5 min of HUT), mainly reflecting the degree of fluid filtration through capillary walls. The degree of agreement between the SGP measurements of the left and right leg was assessed with the method of Bland and Altman and Pearson's correlation coefficient [13]. The paired or unpaired Student’s t test was used for comparisons between or within subjects for normally distributed continuous variables, and the Mann–Whitney U test or Wilcoxon signed rank test was used for continuous variables without a normal distribution. Secondary analysis was performed for unexpected gender differences in calf volume during HUT using multiple linear regression. Data analysis was performed with SPSS software, version 12.0. All tests were performed two-sided. The significance threshold was set at 5 %.
Orthostatic fluid shifts

Figure 1 Volume changes in the calf as measured by SGP during HUT with a parachute harness
Prior to HUT (1 min) one leg was occluded with a pressure cuff at the upper thigh to 250 mmHg. The cuff was deflated after 3 min of tilting. Values are means ± S.E.M.

Table 1 Change of calf volume during HUT with a parachute harness without occlusion in men (n = 13) and women (n = 9)
Values are means ± S.E.M.

<table>
<thead>
<tr>
<th></th>
<th>Right leg</th>
<th>Left leg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Response to 5 min of HUT</td>
<td>2.9 ± 0.2</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>Acute phase (0–1 min of HUT)</td>
<td>1.8 ± 0.2</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>Prolonged phase (1–5 min of HUT)</td>
<td>1.1 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
</tbody>
</table>

RESULTS

Occlusion test
Figure 1 shows the time course of the calf volume change during the occlusion test. Prior to HUT, inflation of the pressure cuff in the supine position caused a significant increase in calf volume (0.5 ± 0.1 %; P < 0.01), presumably owing to the fact that veins close at a lower pressure than arteries, so there is a temporary influx without outflux. During HUT the change of calf volume in the non-occluded leg compared with the occluded leg was larger (1.9 ± 0.3 % in the non-occluded leg compared with 0.2 ± 0.2 % in the occluded leg; P < 0.001).

HUT with a parachute harness without occlusion
After 5 min of HUT without occlusion, the calf volume increased by 2.3 ± 0.2 % in the right leg and by 2.3 ± 0.2 % in the left leg. Measurements of both legs showed a significant correlation (Pearson r = 0.9; P < 0.001) and a satisfactorily small mean difference [left leg minus right leg, 0.03 ± 0.1 %; 95 % CI (confidence interval) −0.2 to 0.2 %]. After 5 min of HUT, the skin temperature of both calves had significantly decreased by 0.4 ± 0.1 °C (temperature in the supine position, 31.2 ± 0.1 °C; temperature in the tilted position, 30.8 ± 0.1 °C; P = 0.001). Muscle tension, as measured with EMG (electromyography), did not differ significantly between the supine and the tilted position [muscle tension in the supine position, 0.3 (0.1–0.8) µV²/s; muscle tension in the tilted position, 0.2 (0.1–0.5) µV²/s; P = 0.1].

A significant gender effect was found in the calf volume changes to HUT: men had a greater increase in volume during HUT than women (Table 1 and Figure 2). The changes were only significant for the acute phase of HUT (0–1 min). No significant differences were found between both genders for the prolonged phase of HUT (1–5 min). Male subjects were significantly taller and weighed more than the female subjects, but BMI (body mass index), baseline calf volume, age, surface EMG activity and the haemodynamic response to HUT did not differ significantly between both genders (Table 2). Calf volume

© The Authors Journal compilation © 2007 Biochemical Society
Figure 2 Time course of calf volume changes in men (black line) and women (grey line) as measured by SGP during HUT with a parachute harness
Values are means ± S.E.M.

Table 2 Baseline characteristics and haemodynamic responses to HUT with a parachute harness for men and women
Values are means ± S.E.M. or medians (interquartile range). DBP, diastolic blood pressure; SBP, systolic blood pressure.

<table>
<thead>
<tr>
<th></th>
<th>Men (n = 13)</th>
<th>Women (n = 9)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine</td>
<td>129 ± 4</td>
<td>125 ± 5</td>
<td>0.6</td>
</tr>
<tr>
<td>Tilted</td>
<td>131 ± 4</td>
<td>127 ± 4</td>
<td>0.4</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine</td>
<td>71 ± 3</td>
<td>66 ± 4</td>
<td>0.3</td>
</tr>
<tr>
<td>Tilted</td>
<td>78 ± 3</td>
<td>73 ± 3</td>
<td>0.2</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine</td>
<td>65 ± 3</td>
<td>71 ± 3</td>
<td>0.1</td>
</tr>
<tr>
<td>Tilted</td>
<td>74 ± 3</td>
<td>80 ± 4</td>
<td>0.3</td>
</tr>
<tr>
<td>Baseline calf circumference (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right leg</td>
<td>35.9 ± 0.4</td>
<td>35.5 ± 0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Left leg</td>
<td>35.7 ± 0.5</td>
<td>35.5 ± 0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Surface EMG activity (µV²/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supine</td>
<td>0.4 (0.1–0.7)</td>
<td>0.1 (0.1–1.6)</td>
<td>0.5</td>
</tr>
<tr>
<td>Tilted</td>
<td>0.2 (0.1–1.0)</td>
<td>0.2 (0.1–0.3)</td>
<td>0.5</td>
</tr>
<tr>
<td>Age (years)</td>
<td>35 ± 4</td>
<td>26 ± 3</td>
<td>0.1</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.81 ± 0.02</td>
<td>1.67 ± 0.02</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Heart-to-calf distance (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96 ± 2</td>
<td>88 ± 2</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>74 ± 1</td>
<td>61 ± 3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.5 ± 0.4</td>
<td>21.7 ± 0.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

significantly increased with heart-to-calf distance but this significance was lost once the contribution of gender was taken into account (95 % CI for the coefficient, -0.04 to 1.0 [volume (%) per cm]; adjusted $R^2 = 0.56$; $P = 0.4$). The gender effect on orthostatic increases of calf volume remained significant after adjustment for the heart-to-calf distance (95 % CI for the difference between both genders, 0.6–2.4 %; adjusted $R^2 = 0.56$; $P = 0.008$).

DISCUSSION
In the present study we evaluated the use of SGP to estimate the time course of orthostatic fluid shifts in the free hanging position. Our method provided stable results, giving a good agreement and significant correlation between the measurements in both legs. However, we cannot formally assess the validity of our
method since there is no gold standard for the assessment of orthostatic fluid shifts. Nevertheless, the occlusion test provided evidence that the changes during HUT with a parachute harness were predominantly caused by orthostatic fluid shifts, except for a small (0.2%) increase during HUT in the occluded leg, which should ideally remain completely unaltered. This small increase may have resulted from congestion, as the inflation of the cuff prior to HUT induced a significant increase in calf volume. It is also possible that hydrostatic effects were not completely eliminated in the occluded leg, as there was still a column of blood from the foot to the site of occlusion in the thigh. Alternatively, the increase resulted from drift of the plethysmograph signal.

Muscle tension, as measured with surface EMG, did not increase during HUT with a parachute harness. It is therefore unlikely that muscle tension confounded the SGP measurements in the free hanging position. During HUT the skin temperature significantly decreased by 0.4°C. A decrease in temperature causes a decrease in electrical resistance of the mercury-in-silastic strain gauge and thus an underestimation of the volume changes. However, we consider this effect to be negligible since a decrease of temperature by 0.4°C would cause a similar change of electrical resistance as would be produced by a 0.02% decrease in calf volume [14].

In the present study we found an unexpected gender difference in orthostatic pooling: the calf volume during HUT increased more in men than in women. This difference was only apparent during the acute phase of HUT. In the prolonged phase a similar slope of volume changes was obtained in both genders. Venous pooling in the first minute of standing is mainly due to an acute increase of hydrostatic pressure [2]. Venous pressure at the level of the calf increases from the horizontal to the tilted position by 45–60 mmHg [7,9]. The gender differences in this phase may be explained by differences in venous compliance, as men have a higher venous compliance, i.e. more flexible veins [15,16]. Calf venous compliance has been assessed in the supine position by inflating a thigh cuff to 60 mmHg with a subsequent gradual reduction to 0 mmHg. However, venous occlusion plethysmography does not equal the pressure increase induced by orthostasis as venous outflow is obstructed in occlusion plethysmography, whereas venous outflow is unhindered in the upright posture. Besides this intrinsic difference in venous compliance, the men in the present study were on average 13 cm taller than women and therefore had a greater hydrostatic pressure at the level of the calf, thereby subjecting their more flaccid veins to larger pressures. The mean gender difference of 7 cm in the heart-to-calf distance equals a hydrostatic pressure difference of approx. 4 mmHg [sinus 60° (tilt angle) × 0.735 × 7 cm of blood]. The amount of orthostatic change in calf volume increased with the heart-to-calf distance but the association lost significance after the adjustment for gender. This finding does not completely rule out an effect of height on orthostatic pooling, since men were taller than women and height may thus partly add to the gender effect. We hypothesize that gender may affect venous pooling both through intrinsic differences in compliance and through differences in height. However, the present study was not designed to address the mechanisms of gender differences in orthostatic fluid shifts and further studies are required to resolve this issue.

The mechanism for the gender difference in venous compliance has yet to be identified. Volume changes during orthostatic stress or venous occlusion are caused by expansion of the deep intramuscular veins [7,17]. These are intrinsically passive tubes with little sympathetic innervation [7]. Meendering et al. [16] hypothesized that the gender differences in calf compliance were caused by female sex hormones. However, the authors found no significant influence of the menstrual cycle or the use of oral anticonceptives on calf venous compliance. Nevertheless, these findings do not exclude a long-term effect of female sex hormones on the structure of the venous wall [16]. Alternatively, the gender difference in venous compliance may be explained by differences in training status, as fitter subjects have greater venous compliance than their unfit peers [18,19].

The observed gender differences in venous pooling and venous compliance contrast with the finding that women have a poorer orthostatic tolerance: a low compliance, i.e. stiffer veins, in women should reduce venous pooling and thereby improve orthostatic tolerance [20]. This discrepancy either suggests that venous pooling is less important than other factors for orthostatic tolerance or that pooling is important, but not in the calf. Other regions, such as the upper thigh or the abdomen, may be of greater importance to trigger syncope. An observation favouring the latter argument is that during LBNP men had a greater increase in calf circumference but women had greater increases in thoracic impedance [21]. These results may indicate that in women fluid shifts preferentially towards the abdomen rather than towards the legs.

Although we did not directly assess absolute volume shifts, we can roughly estimate the amount of pooling for the lower leg. Given an average calf volume of 2077 ml in men [22], a 3% increase would equal an increase of 62 ml per calf.

In conclusion, the use of SGP in the free hanging position is a new promising method to assess orthostatic fluid shifts and can be used in patients with syncope or orthostatic intolerance. The gender differences in orthostatic pooling in the calf may be explained by a higher calf venous compliance in men than in women, together with a greater hydrostatic pressure at the level of the calf in men.
ACKNOWLEDGMENTS

We sincerely thank Saskia le Cessie (Department of Medical Statistics, Leiden University Medical Centre, Leiden, The Netherlands) for her help with statistical analysis.

REFERENCES

14 Honda, N. (1962) Temperature compensation for mercury strain gauge used in plethysmography. J. Appl. Physiol. 17, 572–574

Received 19 February 2007/14 May 2007; accepted 6 June 2007
Published as Immediate Publication 6 June 2007, doi:10.1042/CS20070060